• Title/Summary/Keyword: small-scale structures

Search Result 425, Processing Time 0.036 seconds

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.

A neural network shelter model for small wind turbine siting near single obstacles

  • Brunskill, Andrew William;Lubitz, William David
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.43-64
    • /
    • 2012
  • Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. A neural network-based model has been developed which predicts mean wind speed and turbulence intensity at points in an obstacle's region of influence, relative to unsheltered conditions. The neural network was trained using measurements collected in the wakes of 18 scale building models exposed to a simulated rural atmospheric boundary layer in a wind tunnel. The model obstacles covered a range of heights, widths, depths, and roof pitches typical of rural buildings. A field experiment was conducted using three unique full scale obstacles to validate model predictions and wind tunnel measurements. The accuracy of the neural network model varies with the quantity predicted and position in the obstacle wake. In general, predictions of mean velocity deficit in the far wake region are most accurate. The overall estimated mean uncertainties associated with model predictions of normalized mean wind speed and turbulence intensity are 4.9% and 12.8%, respectively.

Measures to Reduce Industrial Accidents by Investigating them at Small Scale Construction Sites in Rural Area (농촌지역 소규모 건축공사 현장의 재해조사를 통한 저감방안 고찰)

  • Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.95-102
    • /
    • 2014
  • The number of industrial accident victims in the construction industry accounts for 1/3 of those in the entire industries and about 30% of the total compensation costs are spent in the construction industry. As such, the construction industry is a typical industry causing numerous safety accidents. This study analyzes the status of industrial accidents in small scale construction sites to build maximum five-story buildings by examining statistical data for the past five years, investigating those construction sites and conducting interviews with the workers. This study also seeks the causes of and measures for industrial accidents in the small scale construction industry through comparison with relevant systems. The findings are as follows: (1) To reduce hazard rate, shaping the working environment and safety measures that take into account the physically weak classes of the middle aged and the aging are urgently required, because 62.9% of the industrial accidents in the construction industry occurred to those who are 50 years of age or older. (2) The hazard rate at small scale construction sites with less than 10 construction workers accounts for 55% of that of the entire industries. The government, in this context, needs to support finance or technology and improve system by selecting the small scale construction sites, where industrial accidents occur frequently. (3) Because the hazard rate of unskilled workers with less than 6 months of work experience accounts for 90.95% of the total, safety education needs to be concentrated on those unskilled workers. (4) The relevant standards need to be segmented and revised and bolstered, given that 64.79% of death disaster in the construction industry occurs in the temporary structures including scaffolds and ladders.

SMALL-SCALE REGULAR STRUCTURES IN SUPERNOVAE PROGENITORS

  • TSIOPA O. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.215-216
    • /
    • 1996
  • The wind-formed features observed in the early SNe spectra type II and Ia give an evidence of the existence of an ellipsoidal shell formed by the stellar wind prior to the explosion. Such non-spherical shell can occur not only at scales of parsec (the case of SN 1987 A progenitor), but at the scales of 1000 times less. Such shells can be the result of the radial pulsation. The prolate multi-shell structures are interpreted as a result of a pulsation processes with recurrent wind ejections with velocity increasing.

  • PDF

Multi-scale Analysis of Thin Film considering Surface effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Choi, Jin-Bok;Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.427-432
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6-10^8$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

  • PDF

Topology Decision of Truss Structures by Advanced Evolutionary Structural Optimization Method (개선된 진화론적 구조최적화에 의한 트러스 구조물의 형태결정)

  • Jeong, Se-Hyung;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.67-74
    • /
    • 2003
  • The purpose of this study is to improve convergence speed of topology optimization procedure using the existing ESO method and to deal with topology decision of the truss structures according to a boundary condition, such as cantilever type. At the existing ESO topology optimization procedure for the truss structures, the adjustment of member sizes according to target stress has been executed by increasing or reducing a very small value from each member size. In this case, it takes too much iteration till convergence. Accordingly, it is practically hard to obtain optimum topology for a large scale structures. For that reason, it is necessary to improve convergence speed of ESO method more effectively. During the topology decision procedure, member sizes are adjusted by calculating approximate solution for member sizes corresponding to the target stress at every step, the new member sizes are adjusted by such method are applied in FEA procedure of next step.

  • PDF

Similitude Law on Small Scaled RC Model for Seismic Performance Evaluation Tests (내진성능평가실험을 위한 철근콘크리트 축소모형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.455-456
    • /
    • 2009
  • Although pseudo-dynamic test and shaking table test have been performed using small scale models to evaluate the seismic performance of RC structures, researches on similitude law are not sufficient. This study presents a reasonable similitude law for improvement of economical efficiency and reliability.

  • PDF

Connection between a Small-Scale Emerging Island and Double Arc Loops Producing a M6.5 Flare in Active Region 12371

  • Kang, Jihye;Inoue, Satoshi;Moon, Yong-Jae;Magara, Tetsuya;Kusano, Kanya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.81.3-81.3
    • /
    • 2017
  • In this paper, we report a small-scale emerging island and double arc loops, which are associated with a M6.5 flare, in Active Region 12371. We investigate the spatial and temporal changes of both photospheric magnetic fields using SDO/HMI data and coronal magnetic structures obtained from nonliner force-free field (NLFFF) extrapolation. From the vector magnetograms, we find a small-scale emerging island near the main polarityy inversion line about three hours before the flare. The island has a strong shear angle, which is determined by difference between transverse component of observed field and potential field, of around 90 degrees. Furthermore, the NLFFF well reproduces a sigmoidal structure seen in SDO/AIA 94, which is consistent with the double arc loops configuration suggested by Ishiguro and Kusano (2017) who introduced a magnetic configuration showing the double arc instability. The observed emerging island is located among the double arc loops, which is also supproted by their model. Finally, there was an eruption (M6.5 flare) associated with the loops. We discuss a possible role of the double arc instability for the eruption.

  • PDF

Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability

  • Lee, Jong-Han;Park, Yong Myung;Jung, Chi-Young;Kim, Jae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.377-389
    • /
    • 2017
  • Tests of the lateral and torsional stability are quite sensitive to the experimental conditions, such as support conditions and loading system. Controlling all of these conditions in a full-size test is a very challenging task. Therefore, in this paper, an experimental measurement method that can control the experimental conditions using a small-scale model was proposed to evaluate the lateral and torsional stability of beams. For this, a loading system was provided to maintain the vertical direction of the load applied to the beam, and a support frame was produced to satisfy the in-plane and out-of-plane support conditions. The experimental method using a small-scale model was applied successively to the lateral and torsional behavior and stability of I-shaped beams. The proposed experimental methods, which effectively accommodate the changes in the geometry and length of the beam, could contribute to further experimental studies regarding the lateral and torsional stability of flexural members.

Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping

  • Farokhian, Ahmad;Salmani-Tehrani, Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.229-251
    • /
    • 2020
  • In this paper, dynamic buckling of a smart sandwich nanotube is studied. The nanostructure is composed of a carbon-nanotube with inner and outer surfaces coated with ZnO piezoelectric layers, which play the role of sensor and actuator. Nanotube is under magnetic field and ZnO layers are under electric field. The nanostructure is located in a viscoelastic environment, which is assumed to obey Visco-Pasternak model. Non-local piezo-elasticity theory is used to consider the small-scale effect, and Kelvin model is used to describe the structural damping effects. Surface stresses are taken into account based on Gurtin-Murdoch theory. Hamilton principle in conjunction with zigzag shear-deformation theory is used to obtain the governing equations. The governing equations are then solved using the differential quadrature method, to determine dynamic stability region of the nanostructure. To validate the analysis, the results for simpler case studies are compared with others reported in the literature. Then, the effect of various parameters such as small-scale, surface stresses, Visco-Pasternak environment and electric and magnetic fields on the dynamic stability region is investigated. The results show that considering the surface stresses leads to an increase in the excitation frequency and the dynamic stability region happens at higher frequencies.