• Title/Summary/Keyword: small-scale forest

Search Result 110, Processing Time 0.02 seconds

Developing a mass propagation technique for Aralia elata via somatic embryogenesis

  • Moon, H.K.;Lee, J.S.;Kim, T.S.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.114-115
    • /
    • 2000
  • Aralia elata is found in mountain areas all over Korean peninsula. Aralia elata is the scientific name for Japanese angelica tree. The tree belongs to the family Araliaceae, commonly known as ginseng family. Bud sprouts from apical shoot tip of the plants are rich in flavor and thus mainly used for both folk medicine and vegetable. The stalks with apical buds are gathered in the early spring and planted in sandy soil or water in the greenhouse. The sprouting buds are then collected and sold as fresh vegetable. Although the plants have been used for food, they have been cultivated in a very small scale. In spring, local farmers just go around mountain areas to search the trees and gather the stalks as much as they get and sell them to the market. No conservation efforts have been made to stop the exploitation or to save the dwindling population. We tried to provide local farmers with the plants that may be used as an alternative to stalks from wild populations. This will bel! p conserve the wild populations. However, it is hard to propagate them either by conventional cuttings or by seed germination in a short period of time. Mass propagation using tissue culture systems have shown a great promise with several woody plants. Recently we developed a mass propagation technique via somatic embryogenesis system using mature and/or juvenile explants for Aralia elata. Several factors affecting somatic embryogenesis system including SE(somatic embryo) induction, embryogenic callus proliferation, SE germination, plant regeneration and transplanting to field frill be presented. And some problems arising for the somatic embryogenesis system will be also discussed.

  • PDF

Developing a mass propagation technique for Aralia elata via somatic embryogenesis

  • Moon, H.K.;Lee, J.S.;Kim, T.S.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10b
    • /
    • pp.16-17
    • /
    • 2000
  • Aralia elata is found in mountain areas all over Korean peninsula. Aralia elata is the scientific name for Japanese angelica tree. The tree belongs to the family Araliaceae, commonly known as ginseng family. Bud sprouts from apical shoot tip of the plants are rich in flavor and thus mainly used for both folk medicine and vegetable. The stalks with apical buds are gathered in the early spring and planted in sandy soil or water in the greenhouse. The sprouting buds are then collected and sold as fresh vegetable. Although the plants have been used for food, they have been cultivated in a very small scale. In spring, local farmers just go around mountain areas to search the trees and gather the stalks as much as they get and sell them to the market. No conservation efforts have been made to stop the exploitation or to save the dwindling population. We tried to provide local farmers with the plants that may be used as an alternative to stalks from wild populations. This will hel! p conserve the wild populations. However, it is hard to propagate them either by conventional cuttings or by seed germination in a short period of time. Mass propagation using tissue culture systems have shown a great promise with several woody plants. Recently we developed a mass propagation technique via somatic embryogenesis system using mature and/ or juvenile explants for Aralia elata. Several factors affecting somatic embryogenesis system including SE(somatic embryo) induction, embryogenic callus proliferation, SE germination, plant regeneration and transplanting to field will be presented. And some problems arising for the somatic embryogenesis system will be also discussed.lso discussed.

  • PDF

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration (CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토)

  • Woo-Dam SIM;Jung-Soo LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering (Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지)

  • Lee, Jaese;Kim, Woohyeok;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1373-1387
    • /
    • 2021
  • Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.

Fuel Characteristics of Pitch Pine and Mongolian Oak Pellets Fabricated with Coffee Waste and Used Frying Oil as an Additive Using a Pilot-scale Flat-die Pellet Mills (식품부산물인 커피박과 폐식용유를 첨가제로 사용하여 파일럿 규모의 평다이 성형기로 제조한 리기다소나무 및 신갈나무 펠릿의 연료적 특성)

  • Yang, In;Jin, Xuanjun;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study evaluated the potential of coffee waste (CW) and used frying oil (UFO) as an additive in the production of pitch pine (PIP) and Mongolian oak (MOK) pellets. Ash contents obtained from CW and UFO were 0.5% and <0.1%, respectively. The calorific values of UFO (31.4 MJ/kg) and CW (26.3 MJ/kg) are higher than PIP (20.6 MJ/kg) and MOK (19.1 MJ/kg). For pellets fabricated using a pilot-scale flat-die pellet mill, regardless of fabricating conditions, moisture content (MC) and bulk density of PIP and MOK pellets satisfied the A1 wood pellet standard for residential and small-scale commercial uses, as designated by the National Institute of Forest Science (NIFOS) of the Republic of Korea. When CW was used as an additive, durability of PIP pellets made with 12%-MC sawdust and MOK pellets increased. The optimal conditions for producing PIP and MOK pellets could be by adding 20 mesh CW as an additive and the using of 12%-MC sawdust. However, durability of PIP pellets and ash content MOK pellets did not satisfy the A1 wood pellet standard of NIFOS. Thus, further research is needed to improve the properties of wood pellets with additives.

Study on the Marketing of Imported Log through Analyzing the Market Structure (시장구조분석(市場構造分析)에 의한 외재유통(外材流通)에 관(關)한 연구(硏究))

  • Yoo, Byeong Il;Kim, Eui Gyeong;Sung, Kyu Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.84-90
    • /
    • 1985
  • The objective of this study is to analyze the market structure and price formation status of imported log from overseas which has leadership of timber price decision mechanism in Korea. The results obtained are as follows; 1) The 53 percents of the total 134 log importing companies are the small scale companies which import less than ten thousand cubic meters per year, and are mainly aimed to do agent task of importing log. 2) The market structure of imported log formed high level 01 oligopolistic structure, but did not make excess profit of oligopoly because of excess import. 3) The bargaining power of Korea on the price decision process in the overseas log exporting market is very weak, because the market has the bilateral oligopoly structure, and the non-systematic importing behavior of Korean log importing companies make the bargaining power of Korea more weak. 4) It is analyzed that Korean domestic marketing system is comperatively simple, but reasonable marketing system is not established because of the disorder of the marketing behavior. From the results obtained above, it is proposed that the government has to establish the general institutional system to control the supply-demand and marketing problems of imported log, in order to establish the rational structure of market and price decision system of imported log.

  • PDF

A Proposal of Direction of Wind Ventilation Forest through Urban Condition Analysis - A Case Study of Pyeongtaek-si - (도시 여건 분석을 통한 바람길숲 조성방향 제시 - 평택시를 사례로 -)

  • SON, Jeong-Min;EUM, Jeong-Hee;SUNG, Uk-Je;BAEK, Jun-Beom;KIM, Ju-Eun;OH, Jeong-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.101-119
    • /
    • 2020
  • Recently, as a plan to improve the particulate matter and thermal environment in the city, urban forests acting as wind ventilation corridor(wind ventilation forest) are promoted nationwide. This study analyzed the conditions for the creation of wind ventilation forest(vulnerable areas of the particulate matter and thermal environment, distribution of wind ventilation forest, characteristics of ventilation corridor) of in Pyeongtae-si, one of the target cities of wind ventilation forest project. Based on the results, the direction of developing on the wind ventilation forest in Pyeongtaek-si was suggested. As a result of deriving areas vulnerable to particulate matter and thermal environment, it was most vulnerable in urban areas in the eastern area of Pyeongtaek-si. Especially, emissions were high from industrial complexes and roads such as the Pyeongtaek-si thermal power plant, ports, and the national road no. 1. The wind ventilation forest in Pyeongtaek-si was distributed with small-scale windgenerating forests, wind-spreading forests, and wind-connection forests fragmented and disconnected. The characteristic of the overall wind ventilation corridor in Pyeongtaek-si is that the cold air generated from Mt.Mubong, etc., strongly flowed into Pyeongtaek-si and flowed in the northwest direction. Therefore, it is necessary to preserve and expand the wind-generating forests in Pyeongtaek-si in the long term, and it was important to create wind-spreading forests and wind-connection forests so that cold air could flow into the vulnerable area. In addition, in industrial complexes and roads where particulate matter is generated, planting techniques should be applied to prevent the spread of particulate matte to surrounding areas by creating wind-spreading forests considering the particulate matter blocking. This study can be used not only as the basis data for wind ventilation forest project in Pyeongtaek-si, but also as the basis data for urban forest creation and management.

Environmental factors affecting the composition and diversity of the avian community in igune, a traditional agricultural landscape in northern Japan

  • Imai, Haruka;Nakashizuka, Tohru;Oguro, Michio
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.54-65
    • /
    • 2017
  • Background: "Igune," a traditional agricultural landscape in the Tohoku region of Japan, is characterized by small-scale artificial woodlots surrounding a farmer's house that are interspersed with paddy fields. During the rapid economic growth of Japan over recent decades, some igune woodlots have been abandoned or logged. Biodiversity conservation is an important issue worldwide, and traditional agricultural landscapes are of particular interest. To elucidate the role of igune landscapes in conserving biodiversity, we examined the effects of environmental factors on avian communities. Results: The study was conducted in the suburban areas of Oshu and Hanamaki cities, Iwate Prefecture, Japan, at eight sites that varied in the density and area of igune woodlots within the landscape. Bird surveys were conducted from the middle to late breeding season, and several environmental factors of the igune landscape were also measured. The results of canonical correspondence analysis indicated that the characteristics of avian communities were mainly determined by the total forested area in the landscape. Increased total forested area and shrubs layer of igune woodlots did not cause a reduction in number of bird species of any habitat and foraging types, while increased both in species number and abundance of insectivores and forest species. The number of raptor species increased in igune sites without shrubs. Conclusions: Our results suggest that maintaining igune landscapes may enhance avian diversity within this landscape, although the effects of shrubs within igune varied; developed bush communities increased the evenness of the avian community, whereas some raptor species preferred an open forest understory.