• Title/Summary/Keyword: small world network

Search Result 153, Processing Time 0.027 seconds

An Analysis of the Changes of High School Students' Conceptual Structure about Sedimentary Rocks before and after the Field Trip using the Semantic Network Analysis (언어네트워크분석을 이용한 야외지질학습 전후의 퇴적암에 대한 개념 구조 변화 분석)

  • Park, Kyeong Jin;Chung, Duk Ho;Cho, Kyu Seong
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.173-186
    • /
    • 2013
  • The purpose of the study was to investigate the change of students' conceptual structures about sedimentary rocks through the field trip. A semantic network analysis method was utilized to assess the change. An open-ended questionnaire was developed to assess high school students' knowledge of sedimentary rock including its definition, classification, formation process, and characteristics. Fifteen high school students participated in the field trip of this study. The text data were analyzed using the semantic network analysis method. Results are as follows. First, high school students' conceptual structures about sedimentary rocks were more expanded after the field trip. Second, students' conceptual structures formed a 'small world network' by combining the sub-clusters. Third, the size of students' conceptual structures was decreased after a few month of field trip. Nonetheless, the connection among the clusters remained the same.

Framing North Korea on Twitter: Is Network Strength Related to Sentiment?

  • Kang, Seok
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.108-128
    • /
    • 2021
  • Research on the news coverage of North Korea has been paying less attention to social media platforms than to legacy media. An increasing number of social media users post, retweet, share, interpret, and set agendas on North Korea. The accessibility of international users and North Korea's publicity purposes make social media a venue for expression, news diversity, and framing about the nation. This study examined the sentiment of Twitter posts on North Korea from a framing perspective and the relationship between network strengths and sentiment from a social network perspective. Data were collected using two tools: Jupyter Notebook with Python 3.6 for preliminary analysis and NodeXL for main analysis. A total of 11,957 tweets, 10,000 of which were collected using Python and 1,957 tweets using NodeXL, about North Korea between June 20-21, 2020 were collected. Results demonstrated that there was more negative sentiment than positive sentiment about North Korea in the sampled Twitter posts. Some users belonging to small network sizes reached out to others on Twitter to build networks and spread positive information about North Korea. Influential users tended to be impartial to sentiment about North Korea, while some Twitter users with a small network exhibited high percentages of positive words about North Korea. Overall, marginalized populations with network bonding were more likely to express positive sentiment about North Korea than were influencers at the center of networks.

Soft Computing Optimized Models for Plant Leaf Classification Using Small Datasets

  • Priya;Jasmeen Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.72-84
    • /
    • 2024
  • Plant leaf classification is an imperative task when their use in real world is considered either for medicinal purposes or in agricultural sector. Accurate identification of plants is, therefore, quite important, since there are numerous poisonous plants which if by mistake consumed or used by humans can prove fatal to their lives. Furthermore, in agriculture, detection of certain kinds of weeds can prove to be quite significant for saving crops against such unwanted plants. In general, Artificial Neural Networks (ANN) are a suitable candidate for classification of images when small datasets are available. However, these suffer from local minima problems which can be effectively resolved using some global optimization techniques. Considering this issue, the present research paper presents an automated plant leaf classification system using optimized soft computing models in which ANNs are optimized using Grasshopper Optimization algorithm (GOA). In addition, the proposed model outperformed the state-of-the-art techniques when compared with simple ANN and particle swarm optimization based ANN. Results show that proposed GOA-ANN based plant leaf classification system is a promising technique for small image datasets.

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.

Smallest-Small-World Cellular Genetic Algorithms (최소좁은세상 셀룰러 유전알고리즘)

  • Kang, Tae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.971-983
    • /
    • 2007
  • Cellular Genetic Algorithms(CGAs) are a subclass of Genetic Algorithms(GAs) in which each individuals are placed in a given geographical distribution. In general, CGAs# population space is a regular network that has relatively long characteristic path length and high clustering coefficient in the view of the Networks Theory. Long average path length makes the genetic interaction of remote nodes slow. If we have the population#s path length shorter with keeping the high clustering coefficient value, CGAs# population space will converge faster without loss of diversity. In this paper, we propose Smallest-Small-World Cellular Genetic Algorithms(SSWCGAs). In SSWCGAs, each individual lives in a population space that is highly clustered but having shorter characteristic path length, so that the SSWCGAs promote exploration of the search space with no loss of exploitation tendency that comes from being clustered. Some experiments along with four real variable functions and two GA-hard problems show that the SSWCGAs are more effective than SGAs and CGAs.

A Study on the Current Status of Network Marketing of Korea and Its Development Strategy (우리나라 네트워크 마케팅의 실태와 발전 전략)

  • Kim, Hong-seop
    • Journal of Distribution Science
    • /
    • v.3 no.1
    • /
    • pp.91-111
    • /
    • 2005
  • As the environments of world economy have been changed so rapidly, the conditions of marketing and distribution also have been altered. In korea distribution industry has been changed according to the introduction of various patterns of distribution and marketing. Among them the emerging of network marketing, same meaning with multi-level marketing in this research, is a important phenomenon of distribution industry in Korea. Not only it contributes the progress of national economy, especially distribution industry, but also it includes some limitations and criticism from the dissenters. In this paper, the clear definitions and characteristics of network marketing are suggested. And the current situations of network marketing in this country has been analyzed and compared, The future perspectives and problems of this network marketing have been diagnosed and classified for the future development and contribution for national economy. The various alternatives for the future development of network marketing have been studied and suggested in terms of each role of this industry such as distributers, consumers and government. Though this paper has a small contribution, it contains many limitations for research. Therefore it suggest future directions for further research.

  • PDF

Design of An Integrated Neural Network System for ARMA Model Identification (ARMA 모형선정을 위한 통합된 신경망 시스템의 설계)

  • Ji, Won-Cheol;Song, Seong-Heon
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.63-86
    • /
    • 1991
  • In this paper, our concern is the artificial neural network-based patten classification, when can resolve the difficulties in the Autoregressive Moving Average(ARMA) model identification problem To effectively classify a time series into an approriate ARMA model, we adopt the Multi-layered Backpropagation Network (MLBPN) as a pattern classifier, and Extended Sample Autocorrelation Function (ESACF) as a feature extractor. To improve the classification power of MLBPN's we suggest an integrated neural network system which consists of an AR Network and many small-sized MA Networks. The output of AR Network which will gives the MA order. A step-by-step training strategy is also suggested so that the learned MLBPN's can effectively ESACF patterns contaminated by the high level of noises. The experiment with the artificially generated test data and real world data showed the promising results. Our approach, combined with a statistical parameter estimation method, will provide a way to the automation of ARMA modeling.

  • PDF

Hierarchical Structure in Semantic Networks of Japanese Word Associations

  • Miyake, Maki;Joyce, Terry;Jung, Jae-Young;Akama, Hiroyuki
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.321-329
    • /
    • 2007
  • This paper reports on the application of network analysis approaches to investigate the characteristics of graph representations of Japanese word associations. Two semantic networks are constructed from two separate Japanese word association databases. The basic statistical features of the networks indicate that they have scale-free and small-world properties and that they exhibit hierarchical organization. A graph clustering method is also applied to the networks with the objective of generating hierarchical structures within the semantic networks. The method is shown to be an efficient tool for analyzing large-scale structures within corpora. As a utilization of the network clustering results, we briefly introduce two web-based applications: the first is a search system that highlights various possible relations between words according to association type, while the second is to present the hierarchical architecture of a semantic network. The systems realize dynamic representations of network structures based on the relationships between words and concepts.

  • PDF

MFSC: Mean-Field-Theory and Spreading-Coefficient Based Degree Distribution Analysis in Social Network

  • Lin, Chongze;Zheng, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3630-3656
    • /
    • 2018
  • Degree distribution can provide basic information for structural characteristics and internal relationship in social network. It is a critical procedure for social network topology analysis. In this paper, based on the mean-field theory, we study a special type of social network with exponential distribution of time intervals. First of all, in order to improve the accuracy of analysis, we propose a spreading coefficient algorithm based on intimate relationship, which determines the number of the joined members through the intimacy among members. Then, simulation show that the degree distribution of follows the power-law distribution and has small-world characteristics. Finally, we compare the performance of our algorithm with the existing algorithms, and find that our algorithm improves the accuracy of degree distribution as well as reducing the time complexity significantly, which can complete 29.04% higher precision and 40.94% lower implementation time.