• 제목/요약/키워드: small wind turbine generator

검색결과 75건 처리시간 0.026초

Electromagnetic Structural Design Analysis and Performance Improvement of AFPM Generator for Small Wind Turbine

  • Jung, Tae-Uk;Cho, Jun-Seok
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.374-378
    • /
    • 2011
  • Axial Field Permanent Magnet (AFPM) generators are widely applied for the small wind turbine because of the higher power density per unit weight than that of the conventional radial field generator. It is caused by the disc shaped rotor and the stator structures. The generally used AFPM generator, AFER-NS generator, is composed of the two side's external rotors and non-slotted stator without stator core. However, the output voltage and the output power are limited by the large reluctance by the long air-gap flux paths. In this paper, the design study of AFIR-S generator having double side's slotted stator core is accomplished to improve the output generation characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio of permanent magnet are accomplished to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other. For this study, 3D FEA is applied for the design analysis because of three dimensional electromagnetic structures.

Development of a 300W Generator for Lightweight Wind Turbine

  • Lee, Hee-Kune;Lee, Hee-Joon;Kim, Sun-Hyung
    • 한국정보기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.181-188
    • /
    • 2017
  • 레저 활동 인구의 증가와 다양화로 이동용 전력 시스템에 대한 수요가 많고 친환경적인 전력 발전 시스템에 대한 요구가 늘어나고 있으며 이를 충족 시킬만한 발전 장비로 소형 풍력 발전시스템이 대안으로 떠오르고 있다. 이동용 소형 풍력발전기를 개발할 때 가장 중요한 사항으로는 발전기의 무게를 줄이고 효율을 증가시키는 것이다. 기존의 300W급 풍력 발전기의 무게는 10kg정도로 이를 4kg이하로 줄여서 휴대가 용이하게 하면서 고 효율의 풍력 발전기용 발전기를 설계 제작하였다. 또한, 돌풍이 발생하는 한국의 풍량과 지형의 특성상 미풍에서도 발전이 가능하고 도심 및 농어촌 등에서도 독립적으로 사용할 수 있는 소형 풍력발전기를 설계 제작하였다. 기초설계 및 최적화설계를 통해 가볍고 효율이 높은 발전기를 제작하였다. 본 논문에서는 중량을 줄인 300W급 풍력발전기를 설계하고 시제품으로 제작 하였다. 제작한 300W 풍력발전기는 무부하 시험 시 정격속도 900rpm에서 평균출력전압이 24.7V이었으며, 제작된 발전기의 부하시험시 평균 선간전압 : 36.8V, 평균 상전류 : 2.62A로 기계적 입력이 339.84W일 때 출력전력은 289.5W로 측정되었고 이때의 효율은 85.18%이었다. 제작된 발전기 무게는 3.84kg이었다.

소형 풍력발전시스템의 출력제어 (Power Control of Small Wind Power System)

  • 김철호;이현채;서영택;조환기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1066_1067
    • /
    • 2009
  • Wind power is one of most promising renewable energy. The output capacity of large wind turbine has been increased for off-shore application. Number of installation of small wind turbine also has been increased for the stand-alone and off-grid application of remote area and recently small wind turbine equipped with lamp on the pole is used for street lamp. Maximum wind energy must be extracted by wind turbine within rated wind speed. Power must be controlled to protect the system such as blade, generator, and power system above the rated wind speed. In this paper, small wind power system of 800W rating for battery charging is implemented and output power control by furling system is verified at wind tunnel test.

  • PDF

소형 독립형 풍력발전기의 진동 모니터링 및 출력 성능 평가 (Vibration Monitoring and Power Performance Evaluation of a Small Stand-alone Wind Turbine Generator)

  • 유능수;김윤호;김석현
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2007
  • Vibration performance of a 6 kW stand-alone wind turbine(W/T) generator is investigated under the wind environment of Daegwanryung mountain area. In the W/T, wind condition, power performance and structural stability are correlated each other An integrated monitoring system which consists of accelerometers, anemometers, power meters and auxiliary sensors for atmospheric data are constructed to measure the required data simultaneously. Based upon the data acquired over a long period of time, vibration performance of the W/T structure is estimated with annual wind data and generating power performance. Within the operating speed range, possibility of severe nitration is diagnosed. Vibration sources are identified and countermeasures are proposed. The goal of the study is to offer the basic information on W/T vibration performance at the design stage of a small stand alone W/T structure.

소형 풍력발전시스템의 출력성능검사 (Power performance Testing of Small Wind Turbine Generator System)

  • 김현기;김병민;유능수
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.123-128
    • /
    • 2011
  • In this study, procedures, a power performance testing system of Wind Turbine System Research Center of Kangwon National University is introduced. Test prodedures and results are presented on a stand-alone vertical-axis 200W wind turbine manufactured by Geum-Poong Energy Inc.. Power performance test is performed according to IEC standard. The test results are compared with the power performance standard. Also, the effects of normalization and disturbed sectors are considered.

  • PDF

계통연계형 직렬운전 소형풍력발전시스템의 해석 및 운전방안 연구 (The Analysis and Study on Operation Strategy of Grid-connected Series Small Wind Turbine System)

  • 김창하;구현근;손영득;김장목
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.59-64
    • /
    • 2015
  • This paper proposes an analysis and operation strategy of a grid-connected wind turbine system using a diode rectifier. The currents of generators are the same as that of a small wind turbine system. Therefore, the analysis of generator torque is required as opposed to an analysis of blade speed. In this paper, the appropriate MPPT control method is proposed to control generator torque. Usefulness of the proposed operation strategy is verified by simulations and experiments.

Damping for Wind Turbine Electrically Excited Synchronous Generators

  • Tianyu, Wang;Guojie, Li;Yu, Zhang;Chen, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.801-809
    • /
    • 2016
  • The electrically excited synchronous generator (EESG) is applied in wind turbine systems recently. In an EESG control system, electrical torque is affected by stator flux and rotor current. So the control system is more complicated than that of the permanent-magnet synchronous generator (PMSG). Thus, the higher demanding of the control system is required especially in case of wind turbine mechanical resonance. In this paper, the mechanism of rotor speed resonant phenomenon is introduced from the viewpoint of mechanics firstly, and the characteristics of an effective damping torque are illustrated through system eigenvalues analysis. Considering the variables are tightly coupled, the four-order small signal equation for torque is derived considering stator and rotor control systems with regulators, and the bode plot of the closed loop transfer function is analyzed. According to the four-order mathematical equation, the stator flux, stator current, and electrical torque responses are derived by torque reference step and ramp in MATLAB from a pure mathematical deduction, which is identical with the responses in PSCAD/EMTDC simulation results. At last, the simulation studies are carried out in PSCAD software package to verify the resonant damping control strategy used in the EESG wind turbine system.

1kW소형 풍력발전기의 진동 모니터링 (Vibration Monitoring of a 1kW Small Wind Turbine Generator)

  • 김석현;남윤수;유능수;김윤호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.308-311
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF

약한 계통에 연계된 풍력발전기의 과도안정도 해석 (Transient Stability Analysis of Wind Turbine Generator Connected to a Weak Grid)

  • 서규석;박지호
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4494-4499
    • /
    • 2014
  • 약한 계통은 단락비가 작고 임피던스가 크므로 과도 안정도 여유도가 매우 낮다. 약한 계통에 사고가 발생하면 보호 시스템은 사고 선로를 개방함으로써 사고를 제거하는데 이것은 시스템의 안정도를 더욱 약하게 만든다. 그러므로 약한 계통의 안정도 여유를 증가시키기 위한 하나의 방법은 시스템에 추가적인 발전기를 연결하는 것이다. 본 논문에서는 약한 계통의 안정도 여유도를 증가시키기 위하여 기존의 동기발전기를 추가하는 경우와 풍력발전기의 를 추가하는 경우의 안정도 여유도를 비교한다. PSSE를 이용한 과도안정도 시뮬레이션 결과 풍력발전기가 충분한 제동력을 제공하고 안정도 여유를 증가시킴을 확인할 수 있었다. 풍력발전기를 추가할 때 안정도 여유도는 CCT 기준으로 5배까지 향상되었다.

Design and Performance Analysis of Coreless Axial-Flux Permanent-Magnet Generator for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.273-281
    • /
    • 2014
  • This paper presents an innovative design for a low-speed, direct-drive, axial-flux permanent-magnet (AFPM) generator with a coreless stator and rotor that is intended for application to small wind turbine power generation systems. The performance of the generator is evaluated and optimized by means of comprehensive 3D electromagnetic finite element analysis. The main focus of this study is to improve the power output and efficiency of wind power generation by investigating the electromagnetic and structural features of a coreless AFPM generator. The design is validated by comparing the performance achieved with a prototype. The results of our comparison demonstrate that the proposed generator has a number of advantages such as a simpler structure, higher efficiency over a wide range of operating speeds, higher energy yield, lighter weight and better power utilization than conventional machines. It would be possible to manufacture low-cost, axial-flux permanent-magnet generators by further developing the proposed design.