• Title/Summary/Keyword: small wind turbine

Search Result 258, Processing Time 0.028 seconds

Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade (1.5kW급 풍력발전기용 블레이드의 구조해석 및 구조시험)

  • Kim, Hong-Kwan;Lee, Jang-Ho;Jang, Se-Myong;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • This paper describes the structural design and testing for 1.5kW class wind turbine composite blade. In order to calculate the equivalent material properties rule-of-mixture is applied. Lay-up sequence, ply thickness and ply angle are designed to satisfy the requirements for structural integrity. Structural analysis by using commercial software ABAQUS is performed to assess the static, buckling and vibration response. And to verify the structural analysis and design, the full scale structural test in flapwise direction was performed under single point loading according to loading conditions calculated by the aerodynamic analysis and Case H (Parked wind loading) in IEC 61400-2.

Vibration Monitoring of a 1kW Small Wind Turbine Generator (1kW소형 풍력발전기의 진동 모니터링)

  • Kim, Seock-Hyun;Nam, Y.S.;Yoo, N.S.;Kim, Yun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.308-311
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF

Stability Evaluation during Transportation of Offshore Wind Turbine by Barge (바지선을 이용한 해상풍력발전기 운반에 따른 안정성 평가)

  • Seok, Jun;Back, Young-Soo;Park, Jong-Chun;Kim, Sung-Yong;Cha, Tae-Hyung;Yang, Young-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.196-203
    • /
    • 2017
  • In general, the installation of offshore wind turbine have been carried out by a jack-up barge or wind turbine installation vessel. In case of using jack-up barge, an additional barge is required to transport offshore wind turbines. During the transportation, barge is affected by environmental conditions such as wave, wind etc. So, it is important to secure the static and dynamic stability of the barge. In this study, fundamental research was performed to evaluate the stability of barge due to use the guide frame. The analysis for static stability of barge was performed under the two loading conditions with or without wave and those results were evaluated according to the Ministry of Oceans and Fisheries rules. Also motion analysis was performed under the ITTC wave spectrum using buoy data and evaluated based on NORDFORSK guideline by using commercial software Maxsurf Motions.

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

Development of the Small Size Wind Blade Optimized for Korean Wind (한국형 소형 풍력 블레이드 개발에 관한 연구)

  • Lee, Jang-Ho;Chang, Se-Myong;Kim, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.286-289
    • /
    • 2006
  • To get the better efficiency in Korean type wind characteristics, a new wind turbine blade was developed with some structural, vibrational, and aero-elastic analysis for the design of the full-scale blade. A series of full domestic technology from design to manufacturing was created and used in the middle of the development of nelv wind blade. And it was equipped and measured at the wind test side in the Jeju island. After test, it is verified that the blade has the regular capacity of 10kW at the air velocity of 10m/s. And it shows better capacity in the low air-velocity compared to the imported blade. therefore it can be made by only domestic technology, and used for the domestic wind distribution with the better power generation.

  • PDF

Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application (풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구)

  • Sun, Min-Young;Kim, Dong-Yong;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.465-475
    • /
    • 2012
  • This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of this folding blade. In general, in large-sized (MW) wind turbines, damage is prevented because of the use of a pitch control system. On the other hand, pitch control is not performed in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut-out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

Numerical Study of the blade dynamics for a cross-flow turbine

  • Sato Yuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.230-231
    • /
    • 2003
  • Two and three-dimensional flows around a cross-flow wind turbine are investigated by the numerical simulation. The turbine studied in this paper has cylindrical shape with many small blades along its periphery. Incompressible Navier-Stokes equation is used for this simulation. A rotating coordinate system, which rotates at the same speed of the turbine, is used in order to simplify the boundary conditions on the blades of the turbine. Additionally, a boundary fitted coordinate system is employed in order to express the shape of the blades precisely. A third order upwind scheme is chosen for the approximation of the non-linear terms. When the number of blades is about 10, the highest torque is obtained.

  • PDF

Design of Fuzzy Logic based MPPT(Maximum Power Point Tracking) Algorithm for Urban Wind Turbine System (도시형 풍력발전 시스템을 위한 퍼지로직 기반 MPPT 알고리즘 개발)

  • Youk, Yui-Su;Kim, Sung-Ho;Lee, Jang-Ho;Jang, Mi-Hye
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • Generally, wind industry has been oriented to large power systems which require large windy areas and often need to overcome environment restrictions. However, small-scale wind turbines are closer to the consumers and have a large market potential, and much more efforts are required to become economically attractive. In this paper, a prototype of a small-scale urban wind generation system for battery charging application is described and a fuzzy logic based MPPT(Maximum Power Point Tracking) algorithm which can be effectively applied to urban wind turbine system is proposed. Through Matlab based simulation studies and actual implementation using DSP of the proposed algorithm, the feasibility of the proposed scheme is verified.

Research of New Type Small Wind Turbine System (새로운 방식의 소형 풍력발전기 시스템 고찰)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Kim, Byoung-Wook;Kim, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.130-134
    • /
    • 2005
  • The objectives of this study are to improve the aerodynamics performance on the down-wind blade system with folding type blade which consists of the folding type rotor blade, wind vane yawing stabilizer and a bevel gearbox. The aerodynamics performance for the new wind turbine system are compared with those of the conventional up-wind blade system. In addition to, a novel multi voltage inverter system is applied for reductions of harmonic.

  • PDF

Implementation of Wind Power System and Development of a Automatic Tail Safety Controller (풍력발전시스템의 강풍제어기 개발 및 시스템 구성)

  • Choi, Jung-Hoon;Moon, Chae-Joo;Jang, Yung-Hak;Lee, Hyun-Ju
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.424-428
    • /
    • 2004
  • A wind turbine system converts wind energy into electric energy, the system operated under normal environmental conditions. In case of particular turbulent wind flow such as typhoon, hurricane etc, the control of a blade used to a yaw control and a pitch control method. A small wind turbine has not a speed control system to only a manual tail safety brake. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The controller composed of wired motor, relay system, steel wired motor him down a perpendicular to wind flow and then the blade speed reduced high to zero. The operation of automatic tail safety controller verified by manual test.

  • PDF