• Title/Summary/Keyword: small unmanned aerial vehicle

Search Result 135, Processing Time 0.022 seconds

Electric power Small fixed wing UAV Aerodynamic performance Analysis (전기 동력 소형 고정익 무인항공기 공력성능 연구)

  • Jeong, Seongrok
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, the performance of a small fixed wing unmanned aerial vehicle is predicted theoretically with the minimum specifications and a low Reynolds number. Based on the results, it was compared with the results of an actual flight test and simple electric motor wind tunnel test. As a result of the validity of the analysis, a 3.5 kilograms class fixed wing small UAV can predict aerodynamic performance by general theory analysis. However, the required thrust was analyzed as a possible design error. Based on the results of this study, this paper proposed a method to minimize the design error when developing small fixed wing UAV flying in a low Reynolds number.

Study on Application Plan of Forest Spatial Informaion Based on Unmanned Aerial Vehicle to Improve Environmental Impact Assessment (환경영향평가 개선을 위한 무인항공기 기반의 산림공간정보 활용 방안 연구)

  • Sung, Hyun-Chan;Zhu, Yong-Yan;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.63-76
    • /
    • 2019
  • UAVs are unmanned, autonomous or remotely piloted aircraft. As UAVs become smaller, lighter and more economical, their applications continue to expand. Researches on UAVs in the field of remote sensing show development methods and purposes similar to those on satellite images, and they are widely used in studies such as 3D image composition and monitoring. In the field of environmental impact assessment(EIA), satellite information and data are mainly used. However, only low-resolution images covering long distances and large-scale data allowing for rough examination are being provided, so their uses are seriously limited. Therefore, in this paper, we construct spatial information of forest area by using unmanned aerial vehicle and seek efficient utilization and policy improvement in the field of environmental impact assessment. As a result, high-resolution images and data from UAVs can be used to identify the location status of SEIA, EIA, and small scale EIA project plans and to evaluate detailed environmental impact analysis. In addition, when provided together with infographics about Post-environmental impact investigation, it was confirmed that the possibility of periodic spatial information construction and evaluation can be used throughout the entire project contents and project post-process.In order to provide sophisticated infographics for the EIA, drone photography and GCP surveying methods were derived.The results of this study will be used as a basis for improving high-resolution monitoring and environmental impact assessment in the forest sector.

Unmanned aerial vehicle routing algorithm using vehicular communication systems (차량 통신 시스템 기반 UAV 라우팅 알고리즘)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.622-628
    • /
    • 2016
  • The prosperity of IT technologies and the removal of restrictions regarding Unmanned Aerial Vehicles (UAVs), also known as drones, have driven growth in their popularity. However, without a proper solution to the problem of accident avoidance for UAVs, this popularity increases the potential for collisions between UAVs and between UAV and terrain features. These collisions can occur because UAVs to date have flown using radio control or image recognition based autonomous navigation. Therefore, we propose efficient UAV routing schemes to tackle the collision problem using vehicular communication systems. Performance evaluation by computer simulation shows that the proposed methods effectively reduce the collision probability and improve the routing efficiency of the UAV. Furthermore, the proposed algorithms are compatible and can be directly applied with small overhead to the commercial vehicular communication system implementation.

Monitoring butterflies with an unmanned aerial vehicle: current possibilities and future potentials

  • Ivosevic, Bojana;Han, Yong-Gu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • The world of technology is pleasantly evolving to a stage where small robotic aid may be used to ease the work of researchers, and to one day bring more accurate results than the current human abilities allow. In the research field of species monitoring in biology, unmanned aerial vehicles (UAVs) have begun to play an important role in how research is approached, analyzed, and then applied for further investigation, particularly by focusing on a single species. This paper uses data that has been collected from June to October 2015, to demonstrate how the innovative idea of using UAVs to monitor a particular species will bring a positive development in conservation research, and what it was able to achieve in this research field so far. More precisely, we examine the potential of UAVs to take center stage in future research, as well as their current accuracy. This paper describes the use of the commercially available Phantom 2 Vision+ for the detection, assessment, and monitoring of the butterfly species Libythea celtis, demonstrating how it can help the monitoring of butterflies and how it could be developed for even more adventurous and detailed research in the future.

Analysis for Unmanned Aerial Vehicle Airworthiness Certification Criteria (소형 무인항공기 감항인증 기술기준 및 에너지 충돌기법 분석 연구)

  • Lim, Jun-Wan;Kim, Yong-Rae;Choi, Byung-Chul;Ko, Joon-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2014
  • Unmanned aerial vehicles(UAVs) refer to the aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military application. As the avionics and communication technology related to the UAVs are matured, the demand for the UAVs is dramatically increased. Therefore, It is important to develope airworthiness process and regulations of the UAVs to minimize related risk to the man and environment. This paper describes related regulations and classification of the small UAVs for different international airworthiness authorities. The analysis of the CS-LURS verses Stanag 4702 and Stanag 4703 can provide guidelines for the generation of the airworthiness certification criteria for the small UAVs in civil sector. This paper conducted kinetic impact energy analysis of the loss of the small UAVs control scenarios and of the very small UAVs under 66 joules. Based on the analysis, the energy impact analysis can be considered before the design certification approval for the small UAVs.

A Study on the attitude control of the quadrotor using neural networks (신경회로망을 이용한 쿼드로터의 자세 제어에 관한 연구)

  • Kim, Sung-Dea
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1019-1025
    • /
    • 2014
  • Recently, the studies of the Unmanned Aerial Vehicle(UAV) has been studied a variety from military aircraft to civilian aircraft and for general hobby activity aircraft. In particular, for small unmanned aircraft research for the ease of turning and hovering and Vertical-Off Take Landing(VTOL), have been studied mainly quadrotor unmanned aircraft is a type suitable for this study of small unmanned aircraft. The studies of these unmanned aircraft is the kinetic analysis requires complex processes, because these support by the aerodynamic forces on the unmanned aircraft study, and the controller design based on these dynamical analysis and experimental model analysis. In this paper, after the implementation of the basic attitude control based on a general PID controller, we propose concept design of the attitude control method on quadrotor attitude control by using the reinforcement learning algorithm of neural networks for non-linear elements not considered in the controller design.

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

Wind Tunnel Testing for Smart Unmanned Aerial Vehicle (스마트 무인기 풍동시험)

  • Chung, Jin-Deog;Choi, Sung-Wook;Lee, Jang-Yeoun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.37-40
    • /
    • 2006
  • Wind tunnel testings to develope tilt-rotor Smart Unmanned Aerial Vehicle (SUAV) were intensively performed. Small wind tunnel was used to find and evaluate design parameters and to fix general layout of configuration. The application of large tunnel with 40% scaled model is to collect performance and stability related aerodynamic data. During large scale model test wind tunnel is used as a tool to compare Flaperon types, to improve lift characteristics by using different height vortex generators and to alleviate nacelle separated flow effects on the wing.

  • PDF

Small UAV Swarm Mobility Control to Support Target Tracking (소형 무인 비행체 집단의 목표물 추적 기법)

  • Choi, Hyo Hyun;Nam, Su Hyun;Choi, Myungwhan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.251-252
    • /
    • 2012
  • 본 논문에서는 UAV(Unmanned Aerial Vehicle)을 이용하여 목표물을 찾고 목표물의 위치가 멀거나 목표물이 이동 시에도 기지국까지 지속적인 통신 연결을 제공하기 위해 UAV 집단을 제어하는 방안을 제안한다. 기존의 통신 시설을 이용할 수 없으며, UAV들 간에만 무선 랜 통신이 가능한 전시상황이나 특수 재난 상황에서 사용되는 것을 가정하였다. 제안 방안은 UAV들이 탐색지역 내에 목표물을 찾은 후에 목표물에 대한 정보를 기지국까지 전달하기 위하여 UAV들을 이동시킨다. 목표물이 먼 곳에 위치할 시에는 UAV들이 기지국까지의 통신 연결을 주기적이라도 유지하기 위해 UAV가 다른 UAV의 통신 범위까지 이동하여 정보를 전달하고 원래 위치로 복귀하는 방안과, 목표물이 이동할 때 목표물을 추적하며 기지국과의 연결성을 유지하는 방안을 제안한다. 이와 같은 과정들은 NS-2를 사용한 모의실험을 통하여 제안되는 기법을 검증하고 성능을 평가한다.

  • PDF

Development and Verification Methodology for Small Civil Unmanned Aerial Vehicle System based on Open System Architecture (개방형 시스템 아키텍처 기반의 소형 민간 무인항공기 시스템 개발 및 검증 방법)

  • Jo, Hyun-Chul;Park, Keunyoung
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.32-43
    • /
    • 2020
  • The Unmanned Aerial Vehicle(UAV) system has been mainly used for military domains, but it also widely applied to used in the civilian domains. In civilian domains, low-cost and small-sized UAV systems are mainly applied in various industries. The software that operates UAV systems has a lot of common functions. However, even though there are many common functionalities of the software, changing the devices may cause a problem requiring software modification. These problems degrade interoperability, modularity and portability in UAV systems. In order to solve the problems, an Open System Architecture(OSA) has been proposed. In this paper, we propose a UAV system software architecture based on Future Airborne Capability Environment(FACE) standard. Our system can support UAV systems of various platforms in the civilian domains, which is supplied in small quantity batch production. And it has the advantages of software consolidation and portability. Finally, We describe the development and conformant methodology of the software based on the FACE standard using open development tools.

  • PDF