• Title/Summary/Keyword: small ripple

Search Result 193, Processing Time 0.027 seconds

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

Characteristics of the Two-phase Induction Motor By the Inverter Fed Control

  • Yang Byoung-Yull;Kwon Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.312-316
    • /
    • 2005
  • The single phase induction motor has been commonly applied to small-sized electrical appliances because of its low cost, but it has low efficiency and large torque ripple, and it is incapable of speed control. However, two-phase induction motors have small torque ripple, high efficiency and variable speed control, because they are inverter fed. In this paper, the dynamic characteristics of the two-phase induction motor, such as the torque ripple, current and speed, are analyzed by using the time-stepping finite element method, and compared with the cage-type single phase induction motor.

A Simple and Size-effective design method of Battery Charger with Low Ripple Current (작은 전류리플을 갖는 저면적 배터리 충전회로 설계)

  • Chung, Jin-Il;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.523-524
    • /
    • 2008
  • Proposed battery charger is a economic candidate because that is simple and small size. The circuit has linearly operational power stage. That use small size buffer with small driving current and large power MOS gate capacitance. The simulation result show that charging current is stable and has low ripple.

  • PDF

A New 120Hz DC Output Ripple-Voltage Suppression Scheme Using BIFRED Converter with Unity Power Factor (단위 역률을 갖는 BIFRED 컨버터를 이용한 새로운 120Hz DC 출력 리플-전압 저감 제어 기법)

  • Kim Jung-Bum;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.542-546
    • /
    • 2004
  • This paper presents a technique to reduce the low frequency ripple voltage of the dc output in a BIFRED converter with a small-sized energy storage capacitor. The proposed pulse width control method can be effectively used to suppress the low frequency ripple appeared in the dc output and still shows generally good performance such as low THD of input line current and high power factor. Using the small-sized energy storage capacitor, it has better merits of low cost and small size than a conventional BIFRED converter. The proposed technique is illustrated its validity and effectiveness through simulations.

  • PDF

A Control Technique for 120Hz DC Output Ripple-Voltage Suppression Using BIFRED with a Small-Sized Energy Storage Capacitor

  • Kim Jung-Bum;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • This paper presents a technique to reduce the low frequency ripple voltage of the dc output in a BIFRED converter with a small-sized energy storage capacitor. The proposed pulse width control method can be effectively used to suppress the low frequency ripple appeared in the dc output and still maintains generally good performance such as low THD of input line current and a high power factor. Using the small-sized energy storage capacitor, it has better merits of low cost and smaller size than a conventional BIFRED converter. The proposed technique is illustrated its validity and effectiveness through simulations.

A study on Analysis of Steering Feel for Electric Power Steering System Due to Motor Torque Ripple (모터 토크리플에 기인하는 전동식 조향장치 시스템의 조향감 해석에 대한 연구)

  • Kim, Chan-Mook;Han, Jeong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.785-790
    • /
    • 2011
  • This paper presents the effects of an assisting motor torque ripple on a driver's steering feeling using a simulink. The EPS(Electric Power Steering) System is modeled as a 5 degrees of freedom for simulation. To find out the influence of a torque ripple on a driver's steering feeling, which is the purpose of this study, we observed the assisting torque in various different speeds, when the torque ripple increased by 0%~40%. The torque ripple had a small but definite influence on the assisting torque, and it had a greater influence in low speeds rather than high speeds.

  • PDF

Influence of Torque Ripple Caused by Current Harmonics on Induction Motor Fed PWM Inverter (PWM 인버터로 구동되는 유도전동기 시스템에서 고조파가 토오크 맥동에 미치는 영향에 관한 연구)

  • Baek, S.H.;Kim, Y.;Ham, J.G.;Maeng, I.J.;Sohn, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.12-14
    • /
    • 1995
  • It is necessary to analyze exactly the torque ripple components in the harmonics as to decrease the torque ripple. Lower harmonics influence mainly on torque ripple. Among the harmonics, the pairs of 5's, 7's and 11's, 13's are dominant, and the magnitude of each pairs of current harmonics are very significant. Therefore, for decreasing the torque ripple, current harmonic pairs of 6n ${\pm}$1's orders must be simultaneously eliminated. In the case of eliminating one of current harmonic pairs, even though the magnitude of the current harmonics is small, It has great effect on torque ripple.

  • PDF

Controller Design of the Series Resonant Converter for Reducing Output Voltage Ripple (출력 전압 맥동감소를 위한 직렬공진형 변환기의 제어기 설계)

  • 김만고;한재원;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.6
    • /
    • pp.376-382
    • /
    • 1988
  • A small-signal low-frequency disturbance of the input line affects the regulated-output voltage of the series resonant converter. To mitigate the detrimental effect, the output feedback PI-controller is employed. Small-signal linear models are represented to characterize the closed loop series resonant converter system. Design equations for the PI-controller which satisfy stability and percent ripple conditions are derived from the closed-loop linear model. Experimental results are presented which show excellent correlation with theory.

  • PDF

A Study on Pressure Ripple of Axial Piston Pump using Branch Hose (분기관을 이용한 피스톤 펌프의 압력 맥동에 관한 연구)

  • Lee, Hong-Seon;Lim, Tae-Hyeong;Chun, Se-Young;Kwon, Soon-Kwang;Lee, Chang-Don;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.117-124
    • /
    • 2007
  • The pressure ripple in most hydraulic systems is the root cause of their noise and vibration. This paper reduced the pressure ripple using side branch hose for an axial piston pump applied to small excavator. First, in calculating open area, a new method using groove area of valve plate is proposed. Simulation model in AMESim environment is developed to verify proposed method, find effective length and diameter of branch hose. Finally, the comparisons with experiment results show that the proposed method is more effective than previous method in reducing the pressure ripple.