• Title/Summary/Keyword: small peptide

Search Result 185, Processing Time 0.022 seconds

Synthesis of Small Molecule-Peptide Conjugates as Potential Whitening Agents

  • Lee, Hye-Suk;Shin, Kyong-Hoon;Ryu, Geun-Seok;Chi, Gyeong-Yup;Cho, In-Shik;Kim, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3004-3008
    • /
    • 2012
  • Small molecule conjugated peptides were prepared by solid-phase synthesis as potential novel whitening agents, and their melanogenesis inhibitory activities were investigated. The conjugated small molecules were well-known materials as tyrosinase inhibitors, and peptides were selected from the sequences that are known to antagonize melanocortin receptor 1 (MC1R). Most of small molecules-peptide conjugates showed superior melanin inhibition activity to kojic acid and arbutin. Among these, almost all compounds have -AR- sequence. From this study, we concluded that the small molecule conjugated peptides containing -AR- sequence have melanogenesis inhibitory activities and have potential to be used as novel whitening agents.

Eastern Staining: A Simple Recombinant Protein Detection Technology Using a Small Peptide Tag and Its Counter Partner Which is a Fluorescent Compound

  • Lee, Jae-Jung;Kim, Jun-Young;Zhai, Duanting;Yun, Seong-Wook;Chang, Young-Tae
    • Interdisciplinary Bio Central
    • /
    • v.4 no.2
    • /
    • pp.5.1-5.9
    • /
    • 2012
  • Small peptide tags such as c-myc, HA, or FLAG tag have facilitated efficient Western-blotting of proteins of interest especially when specific antibodies for the proteins are not available. However, the conventional Western-blotting requires the multi-steps process taking at least several hours up to two days. With examples of various applications, here we show a convenient and time-saving method for protein detection which employs a fluorescent chemical BDED and its binding peptide RC-tag. And we propose "Estern staining", as a standard term for protein detection method using fluorescent chemicals and their binding small peptide tags. Eastern staining may substitutes for the time-consuming "immuno-staining" in many versatile applications.

Clinical Study on Mannan Peptide Combined with TP Regimen in Treating Patients with Non-small Cell Lung Cancer

  • Yan, Huai-An;Shen, Kang;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4801-4804
    • /
    • 2013
  • Purpose: To investigate short-term response rate, quality of life and toxicities of mannan peptide combined with TP regimen in treating patients with non-small cell lung cancer (NSCLC). Patients and Methods: Forty one patients with NSCLC were divided into an experimental group treated with TP regimen combined with mannan peptide (21 patients) and a control group treated with TP alone (20 patients). Results: Response rates were 61.9% (13/21) for the experimental and 60% (12/20) for the control group (p>0.05). Regarding toxicity, white blood cell decreased more frequently in the control group (65%, 13/20) than in the experimental group (33.3%, 7/21) (p<0.05); nausea and vomiting also occurred more frequently in the control group (55%, 11/20 vs 23.8%, 5/21) (p<0.05). In terms of quality of life, this index was improved by 57.1% (12/21) and 25% (5/20) in experimental and control groups, respectively (p<0.05). Conclusions: Response rate of TP after combined with mannan peptide is mildly increased, while this combination alleviates bone marrow suppression as well as nausea and vomiting of TP, and improves quality of life when treating patients with NSCLC. However, this conclusion should be confirmed by randomized clinical trails.

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

Structure Prediction of the Peptide Synthesized with the Nonribosomal Peptide Synthetase Gene from Bradyrhizobium japonicum

  • JUNG BO-RA;LEE YUKYUNG;LIM YOONGHO;AHN JOONG-HOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.656-659
    • /
    • 2005
  • Small peptides synthesized by nonribosomal peptide synthetases (NRPSs) genes are found in bacteria and fungi. While some microbial taxa have few, others make a large number and variety. However, biochemical characterization of the products synthesized by NPRS demands a great deal of efforts. Since the completion of genome projects of numerous microorganisms, the numbers of available NRPSs genes are being expanded. Prediction of the peptides encoded by NRPS could save time and efforts. We chose the NRPS gene from Bradyrhizobium japonicum as a model to predict the peptide structure encoded by NRPS genes. Using computational analyses, the domain structure of this gene was defined, and the structure of a peptide synthesized by this NRPS was deduced. It was found that it encoded a tripeptide consisting of proline-serine-phenylalanine. This method would be helpful to predict the structure of small peptides with various NPRS genes from the genome sequence.

Substrate Specificity of Protein Kinase UL97, an antiviral target, on Mutant Peptide Substrates Derived from a Peptide, KESYSVYVYKV (KESYSVYVYKV로부터 변형된 펩타이드 기질을 이용한 항바이러스제의 타깃이 되는 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.466-470
    • /
    • 2008
  • Human cytomegalovirus expresses an unusual protein kinase UL97, a member of ${H_V}{U_L}$ family of protein kinase. UL97 can phosphorylate nucleoside analogs such as ganciclovir as well as protein/peptide. It has previously been reported that UL97 is able to phosphorylate a KESYSVYVYKV peptide and that P+5 position (K) is important. We examined the extent of contribution of other positions (P-4 through P+6) of the peptide to be substrate of UL97 using alanine substituted peptides (Ala scanning) and deleted peptides. The result suggested that the E (P-2) is negative effect and P+5 (K) is still important. The peptide YSVYVYK is the shortest substrate enough to show high activity, which could be a starting point to develop peptidomimetic drug. This study would give important information to deeply understand the substrate specificity of UL97 and develop an antiviral drug using the small peptide identified here.

Solution Dynamics Studies for the Lck SH2 Domain Complexed with Peptide and Peptide-Free Forms

  • Yoon, Jeong-Hyeok;Chi, Myung-Whan;Yoon, Chang-No;Park, Jongsei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.81-81
    • /
    • 1995
  • It is well known that Src Homology 2(SH2) domain in many intracellular signal transduction proteins is very important. The domain has about 100 amino acid residues and bind phosphotyrosine-containing peptide with high affinity and specificity. Lck SH2 domain is a Src-like, lymphocyte-specific tyrosine kinase. An 11-residue phosphopeptide derived from the hamster polvoma middle-T antigen, EPQp YEEIPIYL, binds with an 1 nM dissociation constant to Lck SH2 domain. And it is known that the phosphotyrosine and isoleucine residues of the peptide are tightly bound by two well-defined pockets on Lck SH2 domain's surface. To investigate the conformational changes during complexation of SH2 domain with phosphopeptide we have performed the molecular dynamics simulation for Lck SH2 domain with peptide and peptide-free form at look in aqueous solution. More than 3000 water molecules were incorporated to solvate Lck SH2 domain and peptide. Periodic boundary condition has been applied in molecular dynamics simulation. Data analysis with the results of that simulation shows that the phosphopeptide makes primary interaction with the Lck SH2 domain at six central residues, The comparison of the complexed and uncomplexed SH2 domain structures in solution has revealed only relatively small change. But the hydrophilic and hydrophobic pockets in the protein surface show the conformational changes in spite of the small structural difference between the complex and peptide-free forms.

  • PDF

Purification and Characterization of an Antifungal Peptide from the Seeds of Phytolacca americana (미국자리공 종실로부터 항균성 펩타이드의 분리 및 특성 연구)

  • 손대영;신봉정;윤대진;성기영;정영륜
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.203-208
    • /
    • 1998
  • We isolated and characterized an antifungal peptide from the seeds of Phytolacca americana. Growth inhibition assay with Botrytis cinerea was used to screen inhibitory proteins from 60 different plant species. A 4 kDa antifungal peptide (Pa-AFP) inhibitory to hyphal growth of B. cinerea was found in the seeds of P. americana. The peptide Pa-AFP was purified to homogeneity by chromatographies of Sephadex G-50, DEAE-Sepharose, Sephacryl S-300, and C18 reverse-phase HPLC. Western blot analysis showed that a polyclonal antibody raised against the purified peptide cross-reacted with a 4 kDa protein in seeds but not in root and leaf tissues of P. americana. Pa-AFP inhibited the hyphal growth of Botrytis cinerea, Rihzoctonia solani, Fusarium oxysporum, and Magnaporthe grisea. Pa-AFP exhibited growth inhibition of Saccharomyces cerevisiae strain BWG7a, which was sensitive to osmotin.

  • PDF

Intra-Articular Injection of High-Dose ELHLD Peptide for Managing Canine Stifle Osteoarthritis: Kinetic Gait Analysis

  • Jeong, Na-rae;Kang, Byung-Jae
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.105-114
    • /
    • 2021
  • Intra-articular injection of ELHLD peptide is considered to have a therapeutic effect in osteoarthritis (OA) through the inhibition of transforming growth factor-β1. This study aimed to assess the efficacy of intra-articular injections of high-dose ELHLD peptide (100 ㎍/kg) in canine stifle OA. Six client-owned dogs diagnosed with stifle OA were included. Selected dogs were treated with an intra-articular injection of high-dose ELHLD peptide (100 ㎍/kg). Outcome measures, including orthopedic examination, gait analysis, and Canine Brief Pain Inventory (CBPI) score, were evaluated four times after injection. Orthopedic examination, gait analysis, and owner's assessment (CBPI) improved significantly from 4 weeks after injection. In conclusion, we obtained sufficient evidence from this small sample that high-dose ELHLD peptide improves clinical signs of canine OA not only through subjective assessment but also through objective evaluation.

Effect of the Antimicrobial Peptide $\small{D}$-Nal-Pac-525 on the Growth of Streptococcus mutans and Its Biofilm Formation

  • Li, Huajun;Cheng, Jya-Wei;Yu, Hui-Yuan;Xin, Yi;Tang, Li;Ma, Yufang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1070-1075
    • /
    • 2013
  • Streptococcus mutans is the primary etiological agent of dental caries. The antimicrobial peptide $\small{D}$-Nal-Pac-525 was designed by replacing the tryptophans of the Trp-rich peptide Pac-525 with $\small{D}$-${\beta}$-naphthyalanines. To assess the effect of $\small{D}$-Nal-Pac-525 on cariogenic bacteria, the activity of $\small{D}$-Nal-Pac-525 on the growth of S. mutans and its biofilm formation were examined. $\small{D}$-Nal-Pac-525 showed robust antimicrobial activity against S. mutans (minimum inhibitory concentration of 4 ${\mu}g/ml$). Using scanning electron microscopy and transmission electron microscopy, it was shown that $\small{D}$-Nal-Pac-525 caused morphological changes and damaged the cell membrane of S. mutans. $\small{D}$-Nal-Pac-525 inhibited biofilm formation of S. mutans at 2 ${\mu}g/ml$. The results of this study suggest that $\small{D}$-Nal-Pac-525 has great potential for clinical application as a dental caries-preventing agent.