• 제목/요약/키워드: small finite deflection theory

검색결과 13건 처리시간 0.016초

Theoretical analysis of simply supported channel girder bridges

  • Hu, Hong-Song;Nie, Jian-Guo;Wang, Yu-Hang
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.241-256
    • /
    • 2015
  • Channel girder bridges that consist of a deck slab and two side beams are good choices for railway bridges and urban rail transit bridges when the vertical clearance beneath the bridge is restricted. In this study, the behavior of simply supported channel girder bridges was theoretical studied based on the theory of elasticity. The accuracy of the theoretical solutions was verified by the finite element analysis. The global bending of the channel girder and the local bending of the deck slab are two contributors to the deformations and stresses of the channel girder. Because of the shear lag effect, the maximum deflection due to the global bending could be amplified by 1.0 to 1.2 times, and the effective width of the deck slab for determining the global bending stresses can be as small as 0.7 of the actual width depending on the width-to-span ratio of the channel girder. The maximum deflection and transversal stress due to the local bending are obtained at the girder ends. For the channel girders with open section side beams, the side beam twist has a negligible effect on the deflections and stresses of the channel girder. Simplified equations were also developed for calculating the maximum deformations and stresses.

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

내압을 받는 벨로즈의 변형 거동에 관한 연구 (A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF