본 논문에서는 동물 이미지 분류를위한 작은 데이터 세트를 기반으로 개선 된 심층 학습 방법을 제안한다. 첫째, CNN은 소규모 데이터 세트에 대한 교육 모델을 작성하고 데이터 세트를 사용하여 교육 세트의 데이터 세트를 확장하는 데 사용된다. 둘째, VGG16과 같은 대규모 데이터 세트에 사전 훈련 된 네트워크를 사용하여 작은 데이터 세트의 병목을 추출하여 새로운 교육 데이터 세트 및 테스트 데이터 세트로 두 개의 NumPy 파일에 저장하고, 마지막으로 완전히 연결된 네트워크를 새로운 데이터 세트로 학습한다.
기계학습을 위한 패턴인식을 위해서는 학습데이터의 양이 많을수록 그 성능이 향상된다. 하지만 일상에서 검출해내야하는 패턴의 종류 및 정보가 항상 많은 양의 학습데이터를 확보할 수는 없다. 따라서 일반적인 기계학습을 위해 적은데이터셋을 의미있게 부풀릴 필요가 있다. 본 연구에서는 기계학습을 수행할 수 있도록 데이터를 증강시키는 기법에 관해 연구한다. 적은데이터셋을 이용하여 기계학습을 수행하는 대표적인 방법이 전이학습(transfer learning) 기법이다. 전이학습은 범용데이터셋으로 기본적인 학습을 수행한 후 목표데이터셋을 최종 단계에 대입함으로써 결과를 얻어내는 방법이다. 본 연구에서는 ImageNet과 같은 범용데이터셋으로 학습시킨 학습모델을 증강된 데이터를 이용하여 특징추출셋으로 사용하여 원하는 패턴에 대한 검출을 수행한다.
LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.
This paper suggests the set-up plan of the assessment scope in road noise considering road characteristics with the prediction model of road noise. The RLS90 prediction model with some assumptions is used to establish the assessment scope of road noise. The main contents of the applied assumptions are smooth drive of cars, flat region, location of all noise sources in one lane, drive in design speed, and set-up of assessment scope according to traffic volume and car speed. The information of traffic volume to predict road noise is obtained by the distribution of small cars and full-sized cars in road. In this study, the total traffic volume in road is computed by adding the number of small cars to the conversion number of small cars, which means the number of small cars making the same noise as one full-sized car. The prediction result of road noise with the influence factor of traffic volume, car speed, distance between road and receiver is presented. The resultant assessment scope of road noise is obtained by combining road noise prediction data with the set-up standard of road noise assessment scope.
SMILES (simplified molecular-input line-entry system) information of small molecules parsed by one-hot array is passed to a convolutional neural network called black box. Outputs data representing a gene signature is then matched to the genetic signature of a disease to predict the appropriate small molecule. Efficacy of the predicted small molecules is examined by in vivo animal models. GSEA, gene set enrichment analysis.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3608-3626
/
2021
The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.
This study addressed an ill-understood issue of a price response model and a monopolistic price interval of fashion goods. The concept of monopolistic price interval introduced by Gutenberg has been rarely applied to the fashion goods, which is known as price sensitive goods. Thus, this study examined the price insensitive zone of the blue jean. The data of 268 respondents were analyzed using Choice-based Conjoint (CBC) analysis and t-test. Considering brand consideration set as a price determinant, we found the presence of monopolistic price interval of the jean. The results obtained from the CBC analysis showed that the bigger the size of brand consideration set, the shorter the monopolistic interval. This implied that the consumer who had a small brand consideration set was more likely to have a longer monopolistic price interval than the one who had a large brand consideration set, since the consumer with a small consideration set tended to value brand itself more than price. Although significant monopolistic price intervals were shown only for the three jean brands out of the seven, to reduce the size of brand consideration set and to increase brand loyalty were found important in maximizing firms'financial profits.
In this paper we present a novel robotic palpation method for the lump shape estimation using contact pressure distribution. Many previous researches about the robotic palpation have used a stiffness map, which is not suitable to obtain geometrical information of a lump. As a result, they require a large data set and long palpation time to estimate the lump shape. Instead of using the stiffness map, the proposed palpation method uses the difference between the normal force direction and the surface normal to detect the lump boundary and estimate its normal. The palpation trajectory is generated by the normal of the lump boundary to track the lump boundary in real-time. The proposed approach requires small data set and short palpation time for the lump shape estimation since the shape can be directly estimated from the optimally generated palpation trajectory. An experiment result shows that our method can find the lump shape accurately in real-time with small data and short time.
This paper aims at providing valuable insights on Financial Fraud Detection on a mobile money transactional activity. We have predicted and classified the transaction as normal or fraud with a small sample and massive data set using Azure and Spark ML, which are traditional systems and Big Data respectively. Experimenting with sample dataset in Azure, we found that the Decision Forest model is the most accurate to proceed in terms of the recall value. For the massive data set using Spark ML, it is found that the Random Forest classifier algorithm of the classification model proves to be the best algorithm. It is presented that the Spark cluster gets much faster to build and evaluate models as adding more servers to the cluster with the same accuracy, which proves that the large scale data set can be predictable using Big Data platform. Finally, we reached a recall score with 0.73, which implies a satisfying prediction quality in predicting fraudulent transactions.
본 논문에서는 소조사면에 대한 X-선의 선량분포를 일반실험식으로 계산될 수 있도록 beam 측정 데이타를 종합 처리하는 방법에 대하여 기술하고 있다. Beam 데이타는 philips LINAC 6 MV, 8 MV X-ray에 대하여 측정 되었으며, 측정된 요소는 tissue maximum ratio (TMR), off-axis-ratio (OAH), 그리고 relative output factor (ROF)를 포함한다. 소조사면에 의한 방사선 치료를 위하여 isocenter에서 지름이 1 내지 3cm되도록 실린더 형태의 특수 collimator가 2 mm 간격으로 제작되었다. 본 측정을 위하여 다이오드 detector가 이용되었으며 Film 및 TLO 측정기로 측정된 값과 비교검토 되었다. 제한된 조사면으로 측정된 TMR, OAR data로부터 beam 데이타를 나타내는 실험식을 유도하였으며 이 실험식은 임의의 Set-UP조건에 따른 측정값을 예상할 수 있는 일반 실험식으로 확장되었고 측정된 TMR과 OAR 값들은 잘 일치되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.