• Title/Summary/Keyword: small cell lung cancer cells

Search Result 273, Processing Time 0.025 seconds

Identification of Differentially Expressed Genes in Human Small Cell Lung Carcinoma Using Subtractive Hybridization

  • Ahn Seung-Ju;Choi Jae-Kyoung;Joo Young Mi;Lee Min-A;Choi Pyung-Rak;Lee Yeong-Mi;Kim Myong-Shin;Kim So-Young;Jeon Eun-Hee;Min Byung-In;Kim Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • Lung cancer is a leading cause of cancer death worldwide; however, despite major advances in cancer treatment during the past two decades, the prognostic outcome of lung cancer patients has improved only minimally. This is largely due to the inadequacy of the traditional screening approach of diagnosis in lung cancer, which detects only well­established overt cancers and fails to identify precursor lesions in premalignant conditions of the bronchial tree. In recent years this situation has fundamentally changed with the identification of molecular abnormalities characteristic of premalignant changes; these concern tumour suppressor genes, loss of heterozygosity at crucial sites and activation of oncogenes. Basic knowledge at the molecular level has extremely important clinical implications with regard to early diagnosis, risk assessment and prevention, and therapeutic targets. In this study we used a 'cap-finder' subtractive hybridization method, 'long distance' polymerase chain reaction (PCR), streptavidin magnetic beads mediated subtraction, and spin column chromatography to detect differential expression genes of human small cell lung carcinoma. We have now isolated ninety two genes that expressed differentially in the human small cell lung carcinoma cells and analyzed of 12 clones with sequencing, nine cDNAs include tapasin (NGS-17) mRNA, BC200 alpha scRNA, chromosome 12q24 PAC RPCI3-462E2, protein phosphatase 1 (PPPICA), translocation protein 1 (TLOC1), ribosomal protein S24 (RPS24) mRNA, protein phosphatase (PPEF2), cathepsin Z, MDM2 gene and three novel genes. They may be oncogenesis­related proteins.

  • PDF

Dual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells: TLR9 activation and EGFR downregulation

  • Jang, Dahye;Baek, Yu Mi;Park, Hanna;Hwang, Yeo Eun;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Non-small-cell lung cancer (NSCLC) is commonly caused by a mutation in the epidermal growth factor receptor (EGFR) and subsequent aberrant EGFR signaling with uncontrolled kinase activity. A deletion mutation in EGFR exon 19 is frequently observed in EGFR gene mutations. We designed a DNAzyme to suppress the expression of mutant EGFR by cleaving the mutant EGFR mRNA. The DNAzyme (named Ex19del Dz) specifically cleaved target RNA and decreased cancer cell viability when transfected into gefitinib-resistant lung cancer cells harboring EGFR exon 19 deletions. The DNAzyme decreased EGFR expression and inhibited its downstream signaling pathway. In addition to EGFR downregulation, Ex19del Dz containing CpG sites activated Toll-like receptor 9 (TLR9) and its downstream signaling pathway via p38 kinase, causing an immunostimulatory effect on EGFR-mutated NSCLC cells. Thus, dual effects of this DNAzyme harboring the CpG site, such as TLR9 activation and EGFR downregulation, leads to apoptosis of EGFR-mutated NSCLC cells.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer

  • Kim, Han Sol;Oh, Ha-Na;Kwak, Ah-Won;Kim, Eunae;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.559-569
    • /
    • 2021
  • As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Knocking Down Nucleolin Expression Enhances the Radiosensitivity of Non-Small Cell Lung Cancer by Influencing DNA-PKcs Activity

  • Xu, Jian-Yu;Lu, Shan;Xu, Xiang-Ying;Hu, Song-Liu;Li, Bin;Qi, Rui-Xue;Chen, Lin;Chang, Joe Y.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3301-3306
    • /
    • 2015
  • Nucleolin (C23) is an important anti-apoptotic protein that is ubiquitously expressed in exponentially growing eukaryotic cells. In order to understand the impact of C23 in radiation therapy, we attempted to investigate the relationship of C23 expression with the radiosensitivity of human non-small cell lung cancer (NSCLC) cells. We investigated the role of C23 in activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), which is a critical protein for DNA double-strand breaks (DSBs) repair. As a result, we found that the expression of C23 was negatively correlated with the radiosensitivity of NSCLC cell lines. In vitro clonogenic survival assays revealed that C23 knockdown increased the radiosensitivity of a human lung adenocarcinoma cell line, potentially through the promotion of radiation-induced apoptosis and adjusting the cell cycle to a more radiosensitive stage. Immunofluorescence data revealed an increasing quantity of ${gamma}$-H2AX foci and decreasing radiation-induced DNA damage repair following knockdown of C23. To further clarify the mechanism of C23 in DNA DSBs repair, we detected the expression of DNA-PKcs and C23 proteins in NSCLC cell lines. C23 might participate in DNA DSBs repair for the reason that the expression of DNA-PKcs decreased at 30, 60, 120 and 360 minutes after irradiation in C23 knockdown cells. Especially, the activity of DNA-PKcs phosphorylation sites at the S2056 and T2609 was significantly suppressed. Therefore we concluded that C23 knockdown can inhibit DNA-PKcs phosphorylation activity at the S2056 and T2609 sites, thus reducing the radiation damage repair and increasing the radiosensitivity of NSCLC cells. Taken together, the inhibition of C23 expression was shown to increase the radiosensitivity of NSCLC cells, as implied by the relevance to the notably decreased DNA-PKcs phosphorylation activity at the S2056 and T2609 clusters. Further research on targeted C23 treatment may promote effectiveness of radiotherapy and provide new targets for NSCLC patients.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

Synergistic Effect of Ethaselen and Selenite Treatment against A549 Human Non-small Cell Lung Cancer Cells

  • Xu, Wei;Ma, Wei-Wei;Zeng, Hui-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7129-7135
    • /
    • 2014
  • Background: In this study, we aimed to evaluate the growth inhibitory effect of the combination of ethaselen (BBSKE) and low fixed dose of selenite against A549 human non-small cell lung cancer cells in vitro. Materials and Methods: Growth inhibitory effects against A549 cells were determined by SRB assay. Combination index (CI) values were calculated based on Chou-Talalay median-effect analyses. Dose reduction index (DRI) values were applied to calculate dose reduction of selenite. Contents of free thiols and GSH were determined by DTNB assay and intracellular ROS levels by DCFH-DA fluorescence labeling. Results: Compared with BBSKE or selenite single treatment, the combined application of ethaselen and a low fixed dose of selenite shortened the onset time of sodium selenite, reduced $IC_{50}$ values, and increased the maximum inhibition rates, suggesting a possible molecular mechanism of the synergism. Obvious synergistic effects were observed after different times of combination treatment, especially after 24 h. Compared with selenite single treatment, dosage of selenite could be remarkably reduced in combination therapy to gain the same inhibitory effect on cell proliferation. Compared with BBSKE single treatment, the content of free thiols and GSH were significantly reduced and ROS levels greatly elevated in the combination group. For the combination treatment, cell viability increased as greater concentrations of GSH were added. Conclusions: All these results indicate that the combination treatment of BBSKE and selenite showed synergism to inhibit A549 cell proliferation in vitro, and also reduced the selenite dosage to mitigate its toxicity which is very meaningful for combination chemotherapy of lung cancer. The synergism was probably caused by the accelerated exhaustion of intracellular reductive substances, such as free thiols and GSH, which ultimately leads to enhanced oxidative stress and apoptosis.

Two Cases of Gastric Metastasis from Small Cell Lung Cancer (소세포 폐암에서의 위 전이 2예)

  • Yoo, Kwang-Ha;Kim, Hyung-Joong;Ahn, Chul-Min;Lee, Se-Joon;Kim, Seung-Kyu;Lee, Won-Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.273-280
    • /
    • 1999
  • This is a report of gastric metastases secondary from a primary small cell carcinoma of the lung in two men. Blood-borne metastatic involvement of the stomach by cancer is a rare entity. According to the reports in the literature the prevalence of metastasis to the stomach occurs in 0.4% and the most common cell type of the primary lung carcinoma is large cell type(3.7%) followed by adenocarcinoma(2.4%), small cell carcinoma(1.7%) and squamous cell carcinoma(0.7%). The most common tumors that spread to the stomach through the blood stream are malignant melanoma, breast carcinoma and lung carcinoma. Most of the gastrointestinal tract metastases had no specific symptoms because of its submucosal involvement. The prognosis was poor and the mean survival period from the onset of symptoms was 49 days. The first patient was a 56-year-old man who had primary lung carcinoma with brain metastasis. Gastroscopic findings showed two elevated mass lesions in the anterior wall of the mid body with central ulcer and the posterior wall of the fundus with intact surface mucosa. Pathologic examination of stomach tissue revealed small cell type tumor cells infiltrate in the stomach wall segmentally without destruction of the glands. The second patient was a 67-year-old man who had no other evidence of the distant metastasis. Gastroscopic findings showed a huge, oval shaped, ulcerofungating mass with deep penetrating central ulcer coated with dirty exudate in the anterior wall from mid to upper body of the stomach, and thickened elevated rugal folds in the posterior wall of the fundus. Pathologic examination of stomach tissues revealed the small cell type tumor cells showing small smudged nucleus infiltrate into the mucosa of the stomach and the architecture of mucosa intact. We report the two cases of metastatic gastric cancer from the primary small cell lung carcinoma with the literature review.

  • PDF

Telomerase Activity in Non-small Cell Lung Cancer (비소세포폐암에 있어서의 Telomerase 활성도)

  • 김진국;김관민
    • Journal of Chest Surgery
    • /
    • v.30 no.7
    • /
    • pp.701-707
    • /
    • 1997
  • Although many reseraches have been persued to detect the molecular tumor marker to define the cancer, ideal tumor marker which speak for the characteristics of malignancy and has high sensitivity and specificity is not known. One of the characteristics of the malignant cells is indefinite proliferative potential, in other word, immortality. The expression of telomerase and stabilization of te10meres are con omitant with the attaiunent of immortality in tumor cells; thus the measurement of telomerase activity in clinically obtained tumor samples may provide important information which would be useful as a diagnostic marker to detect immortal cancer cells. Telomerase activity was analyzed in 12 non-small cell . lung cancer cell lines and 41 primary non-small cell lung cancers with the use of a PCR-based assay. All the cell lines and the majority of tumors displayed telomerase activity, but telomerase was not detectable in most of the corresponding pathologically-normal tissues. Telomere length was not correlated with telomerase activity. The present study indicate that measurement of telomerase activity may be useful as a molecular tumor marker in non-small cell lung cancer.

  • PDF