• 제목/요약/키워드: small cell lung cancer cells

검색결과 272건 처리시간 0.026초

PD-L1 Targeted Immunoliposomes with PD-L1 siRNA and HDAC Inhibitor for Anti-Lung Cancer Immunotherapy

  • Se-Yun Hong;Seong-Min Lee;Pyung-Hwan Kim;Keun-Sik Kim
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.247-259
    • /
    • 2022
  • Immunotherapy, which uses an immune mechanism in the body, has received considerable attention for cancer treatment. Suberoylanilide hydroxamic acid (SAHA), also known as a histone deacetylase inhibitor (HDACi), is used as a cancer treatment to induce active immunity by increasing the expression of T cell-induced chemokines. However, this SAHA treatment has the disadvantage of causing PD-L1 overexpression in tumor cells. In this study, we prevented PD-L1 overexpression by blocking the PD-1/PD-L1 pathway using PD-L1 siRNA. We designed two types of liposomes, the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC) for SAHA, and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) for siRNA. To effectively target PD-L1 in cancer cells, we conjugated PD-L1 antibody with liposomes containing SAHA or PD-L1 siRNA. These immunoliposomes were also evaluated for cytotoxicity, gene silencing, and T-cell-induced chemokine expression in human non-small cell lung cancer A549 cells. It was confirmed that the combination of the two immunoliposomes increased the cancer cell suppression efficacy through Jurkat T cell induction more than twice compared to SAHA alone treatment. In conclusion, this combination of immunoliposomes containing a drug and nucleic acid has promising therapeutic potential for non-small-cell lung carcinoma (NSCLC).

P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer

  • Ko, Hyo Rim;Nguyen, Truong L.X.;Kim, Chung Kwon;Park, Youngbin;Lee, Kyung-Hoon;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.159-165
    • /
    • 2015
  • Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • 제14권2호
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.

Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro

  • Sikdar, Sourav;Mukherjee, Avinaba;Boujedaini, Naoual;Khuda-Bukhsh, Anisur Rahman
    • 셀메드
    • /
    • 제3권1호
    • /
    • pp.9.1-9.10
    • /
    • 2013
  • In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to $0.35{\mu}g/{\mu}l$ and $0.25{\mu}g/{\mu}l$ of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.

Effect of Depletion and Oxidation of Cellular GSH on Cytotoxicity of Mitomycin Small Cell Lung Cancer Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.92-100
    • /
    • 2004
  • Effect of the depletion or oxidation of GSH on mitomycin c (MMC)-induced mitochondrial damage and cell death was assessed in small cell lung cancer (SCLC) cells. MMC induced cell death and the decrease in the GSH contents in SCLC cells, which were inhibited by z-LEHD.fmk (a cell permeable inhibitor of caspase-9), z-DQMD.fmk (a cell permeable inhibitor of caspase-3) and thiol compound, N-acetylcysteine. MMC caused nuclear damage, release of cytochrome c and activation of caspase-3, which were reduced by N-acetylcysteine. The depletion of GSH due to L-butionine-sulfoximine enhanced the MMC-induced cell death and formation of reactive oxygen species in SCLC cells, whereas the oxidation of GSH due to diamide or $NH_2Cl$ did not affect cytotoxicity of MMC. The results show that MMC may cause cell death in SCLC cells by inducing mitochondrial dysfunction, leading to activation of caspase-9 and -3. The MMC-induced change in the mitochondrial membrane permeability, followed by cell death, in SCLC cells may be significantly enhanced by the depletion of GSH. In contrast, the oxidation of GSH may not affect cytotoxicity of MMC.

Antimetastatic effect of fucoidan against non-small cell lung cancer by suppressing non-receptor tyrosine kinase and extracellular signal-related kinase pathway

  • Nareenath Muneerungsee;Supita Tanasawet;Wanida Sukketsiri
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.844-854
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Fucoidan, a polysaccharide content in brown algae, has been reported to inhibit the growth of cancer cells. The present study aimed to investigate the suppression effects of fucoidan on A549 non-small cell lung cancer cells migration. MATERIALS/METHODS: The anti-migratory activity of fucoidan in A549 cells was examined by wound healing assay and phalloidin-rhodamine staining in response to fucoidan (0-100 ㎍/mL) treatment for 48 h. Western blot analysis was performed to clarify the protein expressions relevant to migratory activity. RESULTS: Fucoidan (25-100 ㎍/mL) significantly suppressed A549 cells migration together with reduced the intensity of phalloidin-rhodamine which detect filopodia and lamellipodia protrusions at 48 h of treatment. The protein expression indicated that fucoidan significantly suppressed the phosphorylation of focal adhesion kinase (FAK), Src, and extracellular signal-related kinase (ERK). In addition, the phosphorylation of p38 in A549 cells was found to be increased. CONCLUSIONS: Our data conclude that fucoidan exhibits anti-migratory activities against lung cancer A549 cells mediated by inhibiting ERK1/2 and FAK-Src pathway.

Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도 (Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases)

  • 김현중;김홍기;김진영;감철우;박동일
    • 동의생리병리학회지
    • /
    • 제22권3호
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

Inhibitory Effects of Bee Venom on Growth of A549 Lung Cancer Cells via Induction of Death Receptors

  • Jang, Dong Min;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제30권1호
    • /
    • pp.57-70
    • /
    • 2013
  • This study was to investigated the effects of the bee venom on inhibition of cell growth via upregulation of death receptor expression in the A549 human lung cancer cells. Bee venom(1-5 ${\mu}g$/ml) inhibited the growth of A549 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of TNFR1, Fas, death receptors(DR) 3, 4 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, -9 and Bax was concomitantly increased, but the expression of Bcl-2, NF-${\kappa}B$ were inhibited by treatment with bee venom in A549 cells. Moreover, deletion of DR3, DR4 by small interfering RNA significantly reversed bee venom-induced cell growth inhibitory effect, whereas Apo3L strengthened anti-proliferative effect of bee venom through enhancement of DR3 expression. These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Inhibitory Effects of Syk Transfection on Lung Cancer Cell Invasion

  • Peng, Chuan-Liang;Zhang, Ying;Sun, Qi-Feng;Zhao, Yun-Peng;Hao, Ying-Tao;Zhao, Xiao-Gang;Cong, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3001-3003
    • /
    • 2013
  • Objective: Spleen tyrosine kinase (Syk) is closely related to tumor invasion and metastasis, and has been shown to have potential inhibitory effects in tumors. In this study, we constructed a eukaryotic expression vector for Syk and analyzed its effects on invasive ability of the A549 non-small cell lung cancer cell line in vitro. Methods: A fragment of Syk was obtained by RT-PCR from human lung cancer cells and cloned into the expression vector pLNCXSyk. After restriction endonuclease digestion, PCR and DNA sequencing confirmation, the recombinant Syk expression plasmid was transfected into A549 human lung cancer cells using lipofectamine protocols. After selection, the cells stably expressed Syk. Detection of Syk expression of the cells by RT-PCR, and invasive ability were examined. Results: The eukaryotic expression plamid pLNCXSyk was constructed and expressed stably in the A549 human lung cancer cells. The RT-PCR results showed that Syk mRNA expression was upregulated significantly (P<0.05). Lower invasion through a basal membrane were apparent after transfection (P<0.05). Conclusions: A eukaryotic expression plasmid to cause Syk expression in lung cancer cells can obviously inhibit their invasive ability in vitro.

Prognostic Significance of Circulating Tumor Cells in Small-Cell Lung Cancer Patients: a Meta-analysis

  • Zhang, Jiao;Wang, Hai-Tao;Li, Bao-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8429-8433
    • /
    • 2014
  • Circulating tumor cells (CTCs) are believed to be particularly important and a reliable marker of malignancy. However, the prognostic significance of CTCs detected in patients with small cell lung cancer (SCLC) is still unclear. We therefore aimed to assess the prognostic relevance of CTCs using a meta-analysis. We searched PubMed for relevant studies and statistical analyses were conducted to calculate the hazard ratio (HR) and 95% confidence intervals (CIs) using fixed or random-effect models according to the heterogeneity of included studies. A total of 7 papers covering 440 SCLC patients were combined in the final analysis. The meta-analysis revealed that CTCs were significantly associated with shorter overall survival (HR=1.9; 95%CI: 1.19-3.04; Z=2.67; P<0.0001) and progression-free survival (HR=2.6; 95%CI: 1.9-3.54; Z=6.04; P<0.0001). The results thus suggest that the presence of CTCs indicates a poor prognosis in patients with SCLC. Further well-designed prospective studies are required to explore the clinical applications of CTCs in SCLC.