• 제목/요약/키워드: slurry stability

검색결과 122건 처리시간 0.032초

전해 이온화와 자외선광을 이용한 사파이어 화학기계적 연마의 재료제거 효율 향상에 관한 기초 연구 (Basic Study on the Improvement of Material Removal Efficiency of Sapphire CMP Using Electrolytic Ionization and Ultraviolet Light)

  • 박성현;이현섭
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.208-212
    • /
    • 2021
  • Chemical mechanical polishing (CMP) is a key technology used for the global planarization of thin films in semiconductor production and smoothing the surface of substrate materials. CMP is a type of hybrid process using a material removal mechanism that forms a chemically reacted layer on the surface of a material owing to chemical elements included in a slurry and mechanically removes the chemically reacted layer using abrasive particles. Sapphire is known as a material that requires considerable time to remove materials through CMP owing to its high hardness and chemical stability. This study introduces a technology using electrolytic ionization and ultraviolet (UV) light in sapphire CMP and compares it with the existing CMP method from the perspective of the material removal rate (MRR). The technology proposed in the study experimentally confirms that the MRR of sapphire CMP can be increased by approximately 29.9, which is judged as a result of the generation of hydroxyl radicals (·OH) in the slurry. In the future, studies from various perspectives, such as the material removal mechanism and surface chemical reaction analysis of CMP technology using electrolytic ionization and UV, are required, and a tribological approach is also required to understand the mechanical removal of chemically reacted layers.

알루미나 슬러리 조성에 따른 그린 테이프의 기계적 특성 (Influence of Alumina Slurry Composition on Mechanical Properties of Green Tapes)

  • 이명현;박일석;김대준;이득용
    • 한국세라믹학회지
    • /
    • 제39권9호
    • /
    • pp.871-877
    • /
    • 2002
  • 알루미나 함량비와 유기물의 첨가비를 변화시킨 각 조성의 알루미나 테이프를 제조하였다. 유기첨가물 조성이 알루미나 슬러리의 안정성에 미치는 영향을 확인하기 위해 각 조성의 슬러리에 대하여 상대점도를 측정하였다. 여러 조성 슬러리의 상대점도를 알루미나 부피분율의 함수로 나타내었을 때 동일한 곡선 상에 위치하였으며, 이로부터 유기물의 함량 및 조성이 캐스팅용 슬러리의 안정성에 큰 영향을 미치지 않음을 알 수 있었다. 준비된 각 조성의 슬러리를 성형하여 건조한 그린 테이프들을 상온에서 인장시험한 결과, 파괴변형율은 알루미나 함량비와 결합제 첨가비가 증가함에 따라 각각 363%에서 45%로, 68%에서 25%로, 연속적으로 감소하는 경향을 나타내었으나, 인장강도는 결합제의 첨가비가 증가함에 따라서는 0.5MPa에서 4MPa로 연속적으로 증가하는 경향을, 알루미나 함량비가 증가함에 따라서는 1MPa까지 급격히 증가한 후 감소하는 변화를 나타내었다. 그린 테이프들은 20$^{\circ}C$에서부터 80$^{\circ}C$까지 승온한 조건에서 인장하였을 때 유기물의 열화로 인해 기계적 물성이 급격히 저하되었다.

질화규소 현탁액에서 분산제와 결합제의 상호작용연구 (Polymeric Interactions of Dispersant and Binder in Aqueous Silicon Nitride Suspensions)

  • 김봉호;김명호;이수;백운규
    • 한국세라믹학회지
    • /
    • 제32권8호
    • /
    • pp.901-908
    • /
    • 1995
  • In aqueous slurry processing of silicon nitride, the interaction of dispersant and binder used as polymeric processing additives on the silicon nitride particle surface was studied to identify the effect of these processing polymeric additives on the ceramic powder processing. The adsoprtion isotherm study of anionic organic molecule as dispersant and nonionic organic molecules as binder of silicon nitricde was studied to investigate the effect of these processing organic additives on the physicochemical properties of silicon nitride particles. As anionic molecule adsorbed onto silicon nitrice surface, the IEP of silicon nitride shifted toward acidic pH and changed the stability of silicon nitride particle. However, the adsorption of binder as nonionic organic molecule onto silicon nitride surface did not changed the IEP but caused the decrease of electrostatic potentials of silicon nitride. These distinctive adsorption behaviors of organic additives on silicon nitride particles can be closely correlated to the stability of silicon nitride particles suspended in aqueous media.

  • PDF

연료극 지지체식 원통형 고체산화물 연료전지의 성능 특성 (Performance Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell)

  • 송락현;송근숙
    • 한국재료학회지
    • /
    • 제14권5호
    • /
    • pp.368-373
    • /
    • 2004
  • To improve the conventional cathode-supported tubular solid oxide fuel cell (SOFC) from the viewpoint of low cell power density, expensive fabrication process and high operation temperature, the anode-supported tubular solid oxide fuel cell was investigated. The anode tube of Ni-8mol% $Y_2$O$_3$-stabilized $ZrO_2$ (8YSZ) was manufactured by extrusion process, and, the electrolyte of 8YSZ and the multi-layered cathode of $LaSrMnO_3$(LSM)ILSM-YSZ composite/$LaSrCoFeO_3$ were coated on the surface of the anode tube by slurry dip coating process, subsequently. Their cell performances were examined under gases of humidified hydrogen with 3% water and air. In the thermal cycle condition of heating and cooling rates with $3.33^{\circ}C$/min, the anode-supported tubular cell showed an excellent resistance as compared with the electrolyte-supported planar cell. The optimum hydrogen flow rate was evaluated and the air preheating increased the cell performance due to the increased gas temperature inside the cell. In long-term stability test, the single cell indicated a stable performance of 300 mA/$\textrm{cm}^2$ at 0.85 V for 255 hr.

2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석 (Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis)

  • 오영인;신은철;강정구
    • 한국지반신소재학회논문집
    • /
    • 제5권4호
    • /
    • pp.11-18
    • /
    • 2006
  • 지오텍스타일 튜브공법은 지오텍스타일의 필터 및 배수기능을 복합적으로 활용하는 공법으로 과거의 모래주머니, 훼브릭 폼, 게비언 등의 개념에서 최근 수리학적 채움기법을 적용하여 해안침식방지 구조물, 슬러지의 탈수, 교량축조를 위한 가도, 여수로 공사를 위한 임시구조물 등의 신구조물 공법으로 자리매김 하고 있다. 본 연구에서는 지오텍스타일 튜브와 지반재료와의 복합구조물의 안정거동에 대하여 2차원 한계평형, 침투해석 및 사면안정해석방법을 통하여 분석하였다. 2차원 한계평형이론을 통하여 설계영향인자 및 현장여건에 따른 지오텍스타일 튜브 복합구조물의 지반공학적 안정성을 분석하였으며, 사면안정해석을 위하여 일차적으로 부정류 침투해석을 통하여 조위변동에 따른 복합구조물내의 간극수압분포를 분석하였다. 최종적으로 범용 사면안정해석 프로그램인 Slope/W를 이용한 침투분석결과와 연동하여 사면안정해석을 수행하였다. 2차원 한계평형해석 및 평면변형해석 방법을 통한 분석결과, 세가지 형태의 지오텍스타일 튜브 복합구조물 모두 안정성을 확보하고 있으며, 지오텍스타일 튜브 구조물 자체는 수위조건 변화에 대해서는 크게 영향이 없이 안정한 것으로 도출되었다.

  • PDF

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

HSS을 적용한 STI CMP 공정에서 EPD 특성 (A study of EPD for Shallow Trench Isolation CMP by HSS Application)

  • 김상용;김용식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.35-38
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.l8um semiconductor device. Through reverse moat pattern process, reduced moat density at high moat density, STI CMP process with low selectivity could be to fit polish uniformity between low moat density and high moat density. Because this reason, in-situ motor current end point detection method is not fit to the current EPD technology with the reverse moat pattern. But we use HSS without reverse moat pattern on STI CMP and take end point current sensing signal.[1] To analyze sensing signal and test extracted signal, we can to adjust wafer difference within $110{\AA}$.

  • PDF

Properties of Low Density Foamed Concrete for Building Construction Using Anionic Surfactants of Synthetic and Natural Materials

  • Jeong, Ji-Yong;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제11권6호
    • /
    • pp.557-566
    • /
    • 2011
  • The surfactants facilitate the formation of foam bubbles under a proper condition and provide stability of foam bubbles by decreasing the surface tension of solutions and increasing the viscosity of foam surface. However, there have been almost no practical data of foam concrete in this regard so far. This study aims to understand the effects of foaming agents such as anionic synthetic surfactant and anionic natural material surfactant on the low density foamed concrete. From the experiment, the vegetable soap of anionic natural material surfactants showed a higher foaming rate, more open pores, slightly lower compressive strength, and a higher permeability coefficient compared to the vegetable soap of anionic synthetic surfactants. It is believed that the natural material surfactants make not only the surface tension of the solution low but also the viscosity of slurry high.

Dispersant-Binder Interactions in Aqueous Silicon Nitride Suspensions

  • Paik, Ungyu
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 제11차 KACG 학술발표회 Crystalline Particle Symposium (CPS)
    • /
    • pp.129-153
    • /
    • 1996
  • In aqueous slurry processing of silicon nitride, the interaction of dispersant and binder on the surface of particles was studied to identify the effect of these additives on ceramic powder processing. Polymethacrylic acid (PMAA) and polyvinyl alcohol (PVA) were used as dispersant and binder, respectively. the adsorption isotherms of PMAA and PVA for the silicon nitride suspension were determined, while the adsorption of PMAA was differentiated in the mixed additive system by ultraviolet spectroscopy. These experiments were done in order to investigate the effect of these organic additives on the physicochemical properties of silicon nitride suspensions. The electrokinetic behavior of silicon nitride was subsequently measured by electrokinetic sonic amplitude (ESA). As PMAA adsorbed onto silicon nitride, the isoelectric point (pHicp) shifted from pH=6.7 to acidic pH, depending on the surface coverage of PMAA. However, adsorption of PVA did not change the pHicp of suspensions, but did decrease the surface potential of silicon nitride moderately. The rheological behavior of silicon nitride suspensions was measured to assess the stability of particles in aqueous media, and was correlated with the electrokinetic behavior and adsorption isotherm data for silicon nitride.

  • PDF

Enhanced Biodegradation of Lindane Using Oil-in-Water Bio-Microemulsion Stabilized by Biosurfactant Produced by a New Yeast Strain, Pseudozyma VITJzN01

  • Abdul Salam, Jaseetha;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1598-1609
    • /
    • 2013
  • Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindane-contaminated environments.