• Title/Summary/Keyword: slump-flow

Search Result 317, Processing Time 0.027 seconds

An Fundamental Study on Method of Packaged Dry Combined Materials for Concrete (건조 재료를 사용한 콘크리트의 포장화에 관한 기초적 연구)

  • Han, Da-Hee;Park, Hee-Gon;Lim, Nam-Gi;Kim, Sung-Sik;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.119-122
    • /
    • 2003
  • Most concrete is recently made of an aggregate which is properly absorbed, and carried in it in order to do capability at every fields. We have been close to demand new capability of high flowing and enduring for specific concretes. That is difficult to cope with claiming the efficiency on deterioration from lack of a high quality aggregate Therefore, For solving the problems we apply to a packing method for using dried materials. That is to say it is a kind of making into an instant. In this study, There is a purpose to present fundamental data, comparing and analyzing a phenomenon about aggregate's absorption following the rate of adding water, for using existing materials.

A Study on the Mixing of Ultra High Performance Concrete with Red Mud containing Titan dioxide (이산화티탄이 함유된 레드머드를 혼입한 초고성능콘크리트의 배합에 관한 연구)

  • Seo, Seung-Hoon;Kwon, Shi-Won;Oh, Sang-Keun;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.70-71
    • /
    • 2019
  • Interest in indoor air quality is increasing day by day due to various reasons such as industrial development. Because redmud, an industrial subsidiary, contains titanium dioxide, this study evaluated self-consolidation performance with Slump Flow Test, J-Ring Test, and L-Box Test by mixing redmud in a mixture of ultra-high performance concrete, and sought the optimal combination with high flowability. In addition, the UHPC mixing experiment with photocatalyst was conducted, and the photocatalyst was replaced by the weight ratio of cement and the redmud by the weight ratio of fine aggregate and mixed with the concrete mixture.

  • PDF

Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN

  • Chella Gifta Christopher;Partheeban Pachaivannan;P. Navin Elamparithi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.85-96
    • /
    • 2023
  • The characteristics of self-compacting concrete (SCC) made with fly ash and reinforced with polyester fibers were investigated in this research. Polyester fibers of 12 mm long and 15 micrometer diameters were utilized in M40 grade SCC mixtures at five different volume fractions 0.025%, 0.05%, 0.075%, 0.1%, 0.3% as a fiber reinforcement. To understand the influence of polyester fibers on passing ability, flowability, segregate resistance the J ring, L box, V funnel, slump flow and U box tests were performed. Polyester fibers have a direct influence, with a maximum of 0.075% polyester fibers producing excellent characteristics. ANN models were constructed using the testing data as inputs to anticipate the fresh and hardened characteristics as targeted outputs. The research revealed that R2 values ranging from 0.900 to 0.997 appears to be a good correlation. The performance of ANN models and regression models for predicting the new characteristics of SCC is also evaluated.

Evaluation of NOx Removal Amount of UHPC with Titania fixed by Sieving-Vibration & Painting Methods (체가름-진동 및 페인팅에 의해 이산화티탄이 고정된 UHPC의 NO제거량 평가)

  • Kim, Byoung-Il;Oh, Sang-Keun;Kim, Soo-Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.193-194
    • /
    • 2021
  • Ti-salt agglomerated titanium dioxide photocatalyst from sludge, which has various and excellent functions such as nitrogen oxide removal performance, antifouling performance, and bacteria removal performance, is intended to be applied to UHPC. The UHPC used in this study is supposed to have a high compressive strength of 100~200MPa and a high flowability of 600mm or more with a slump flow. Titanium dioxide is fixed to the UHPC surface by sieving through a test sieve and compaction and painting using a vibration compactor, and this is tested according to ISO 22197-1. The NO removal amount is evaluated by classification the result range.

  • PDF

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

A Study on the Charateristics of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 첨가한 수중불분리성 콘크리트의 특성에 관한 연구)

  • Baek Dong-Il;Kim Myung-Sik;Jang Hee-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.777-783
    • /
    • 2004
  • In this study, for improving of concrete properties, those are used ground granulated blast slag(GGBS) and fly ash(FA). There are some advantage to add the GGBS and FA in plain concrete. The objective of this study is to find the characteristics of fresh and hardened antiwashout underwater concrete which is followed by blended ratio of GGBS and FA. Experimental parameters were chosen that W/C was 50%, S/a was 40% and as the blended ratio of GGBS was set at 0, 10, 20, 30, 40, 50, 60% and FA was set at 0, 10, 15, 20, 25, 30, 35% in order to prove the properties of antiwashout underwater concrete can be changed by blended ratio of GGBS md FA. It was measured pH, suspension and slump flow of fresh antiwashout underwater concrete and compressive strength of hardened antiwashout underwater concrete in age of 7 days, 28 days and 56 days. The experimental results of fresh concrete show that pH, suspension and slump flow were all satisfied with KSCE (Korea Society of Civil Engineering) standard value and mix design standard value. To synthetically consider, the optimum blended ratio is about 30% of GGBS and FA.

Rheological Evaluation of Blast Furnace Slag Cement Paster over Setting Time (고로슬래그 혼합 시멘트 페이스트의 응결시간 경과에 따른 레올로지 특성)

  • Cho, Bong-Suk;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.505-512
    • /
    • 2016
  • Even though high performance concrete was developed according to the trend of bigger and higher of reinforced concrete building, the rheological evaluations such as viscosity, yield stress are not enough to use as input data to accomplish the numerical analysis for the construction design. So there are many problems in the harden concrete such as poor compaction, rock pocket and crack, etc. in the field. In this study, consistency curves were measured by the viscometer as hydration reaction time passed. At the same time the slump flow test and Vicat setting test were carried out for comparing with the results of rheological properties. The fluidity of the W/B 30% decreased as the increase of replacement ratio of blast furnace slag. But in case of W/B 40%, the replacement ration did not significantly influenced to the slump flow value with the passage of hydration time. By the replacement of blast furnace slag to cement, initial setting was delayed and the time gap between initial and final setting became shorten. Through the regression analysis using Bingham model, there are a sudden changes of viscosity and yield stress around initial setting in case of low W/B 30%. The increase of workability by the change of free water in cement paste was offset by the coating effect of impermeable layer in case of W/B 40%.

Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin (실리카퓸과 메타카올린을 사용한 다성분계 고강도콘크리트의 특성)

  • Park, Cho-Bum;Kim, Ho-Su;Jeon, Jun-Young;Kim, Eun-Kyum;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.307-315
    • /
    • 2008
  • In this study, it is investigated the properties of high strength concrete using mineral admixture, on the purpose of use of meta kaolin for the substitutive materials to silica fume which is so expensive. The plain mixtures are 3 degrees which are ordinary portland cement, blast furnace slag cement and OPC included fly ash 20%, and silica fume and meta kaolin are substituted for the each plain mixtures in the range of 20%. The results of experiment showed as follows. In case of silica fume was only used, the viscosity and slump flow of fresh concrete were much decreased, on the contrary air content increased. But as usage of meta kaolin increased, to being increase the viscosity of fresh concrete, slump flow increased and air content and usage of super-plasticizer were decreased. Accordingly the workabilities of concrete were against tendency between silica fume and meta kaolin. The compressive strength, velocity of ultrasonic pulse and unit weight were increased according to usage of meta kaolin, the properties of hardened concrete were judged that they are affected with air content of fresh concrete, so it is very important to control air content of high strength concrete. Therefore, the use of meta kaolin is prospected to the substitutive material of silica fume, in case of using silica fume and meta kaolin, it is judged that the optimum usage of silica fume and meta kaolin is about 10% respectively, considering workability and strength of concrete.

An Experimental Study on the Properties of High Flowing Concrete according to Water/Binder Ratio(W/B) (물결합재비에 따른 고유동콘크리트의 특성에 관한 실험적 연구)

  • 김무한;최세진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.329-335
    • /
    • 2001
  • Recently, in many laboratories and institutes it is being studied on the high flowing concrete widely, which has high fluidity, non-segregation ability and fillingability, and sometimes being applied to the construction field actually. And the fluidity properties of high flowing concrete are influenced according to the several factors ; binder content, water/binder ratio and water content etc. This is an experimental study to compare and analyze the effect of water/binder ratio and water content on the properties of high flowing concrete. For this purpose, the mix proportion of high flowing concrete according to water/binder ratio(W/B : 0.30, 0.35, 0.40, 0.45) and water content (W : 155, 165, 175, 185 kg/㎥) was selected. And then slump-flow, V-lot, L-passing test in fresh concrete, and compressive strength, freezing and thawing test in hardened concrete were peformed. According to test results, it was found that the viscosity of all those high flowing concrete with the water content 175 kg/㎥ was satisfied with 50 cm pass time of slump flow prescribed by Japanese Architectural Standard Specification (JASS 5) - from 3 to 8 seconds. And non-segregation ability of concrete with W/B 0.35 was better than the other mix proportions. Especially, the compressive strength after curing 24 hours(1 day) of all high flowing concrete was higher than that prescribed by JASS 5(50 kgf/㎠).

Spalling Properties of the High Strength Concrete Containing PP Fiber Subjected to Fire Mixture Factors and Drying Condition (배합요인 및 건조상태 변화에 따른 PP섬유 혼입 고강도 콘크리트의 폭렬특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Song, Yong-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.115-122
    • /
    • 2008
  • This paper is to investigate the affecting factors on spalling of the high strength concrete including W/B, air content and moisture condition as well as PP fiber contents subjected to fire. An increase with 0.05% of PP fiber resulted in a reduction of slump flow by as much as 11%. Ten percent of air contents due to excessive amounts of AE agent does not lead to variance of slump flow, regardless of PP fiber content. For the effect of the compressive strength, high strength concrete with 15, 25 and 35% of W/B gained 60 MPa~100 MPa of the compressive strength. High strength concrete with H-air had half of compressive strength of that with L-air due to large amount of air. Fire test was conducted in accordance with KS F 2257-1 for 1 hour. Spalling did not occur with all specimens containing more than 0.10% of PP fiber except those with 15% of W/B. Moreover, it is interesting to note that the specimens with more than 10% of air content and with oven dried condition, respectively, had no spalling even if the content of PP fiber is 0.05 vol.%.