• Title/Summary/Keyword: sludges

Search Result 259, Processing Time 0.021 seconds

Characterization of Activated Sludge Settlings in Korea (국내 하수처리장 활성 슬러지의 침전특성에 관한 연구)

  • Lee, Hwangu;Kim, Youngchul;Choi, Euiso
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.964-971
    • /
    • 2009
  • In this paper, activated sludge settling was characterized based on field trip and zone settling tests. Plants used for this study include 5 conventional activated sludge processes and 3 A2O type treatment processes. The treatment capacities are in the range from 12,000 to $250,000m^3$/day. Total number of zone settling tests were 188 set and SVI values representing settling characteristics were from 100 to 300 mL/g. It was found out that zone settling velocity of these examined plant sludges can be approximated by mean values calculated by Keinath and Daigger/Roper models. Based on these three models, solid flux analysis were carried out in order to compare design criteria ($3.96{\sim}6.04kg/m^2-hr$) recommended by Korea Sewage Facility Design Guideline with two models used in USA. The results show that design criteria are only applicable for normal condition in settling characteristics (below SVI 100 mL/g). Solid flux analysis of surveyed plants indicates that most of the plants are operated underload conditions except several plants experiencing poor sludge settling problem. Most of the plants are operated under high sludge blanket depths (SBD).

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomasses (농축산바이오매스의 고온 혐기성 생분해도 평가)

  • Heo, Nam-Hyo;Kang, Ho;Jeong, Ji-Hyun;Lee, Seung-Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.514-517
    • /
    • 2009
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of agro-industrial biomasses such as cattle manure, Italian ryegrass(IRG), Oats, Rye and Barley as the forage crops, Rush, the sludges produced from milling and slaughterhouse wastewater treatment plant(SMWTP, SSWTP). In the condition of thermophilic anaerobic digestion, the ultimate methane yield and anaerobic biodegradability of forage crops ranged from 0.367 to $0.452LCH_4$/gVS of methane yield with AB having the range of about 77.0 to 87.3%. On the other hand, that of other substrate showed low figures compared with the forage crops because of low VS content and C/N ratio. Therefore, the forage crops could be used as a good substrate to produce much more the methane in anaerobic digestion.

  • PDF

Chemical characteristics of organic sludges generated from chemical product manufacturing industry (화학제품제조업에서 배출되는 유기성슬러지의 화학적 특성)

  • Shon, Byung-Hyun;Jung, Moon-Hun;Lee, Joo-Ho;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Man-Sig;Lee, Gang-Woo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.407-410
    • /
    • 2008
  • 원소분석 결과 평균값은 "화합물 및 화학제품 제조업"의 경우 C 33.06wt%, H 4.34wt%, O 24.81wt%, N 5.18wt%, S 0.72wt%로 나타났으며, "코크스, 석유 정제품 및 핵연료 제조업"의 경우 C 36.58wt%, H 4.74wt%, O 26.79wt%, N 5.09wt%, S 0.49wt%로 나타났다. 열중량분석 결과, B사에서 배출되는 슬러지는 $700^{\circ}C$ 이상에서 그리고 F와 N 사에서 배출되는 슬러지는 $600^{\circ}C$ 정도의 온도에서도 연소가 가능할 것으로 판단된다. 연소테스트 결과, 산화반응과 동시에 열분해 반응이 일어나 고농도의 일산화탄소가 배출된다.

  • PDF

Current Research Trends in Microbial Fuel Cell Based on Polymer Electrolyte Membranes (고분자 전해질 분리막 기반 미생물 연료전지의 최근 연구동향)

  • Choi, Tae-Hwan;Kim, Hyo-Won;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.173-184
    • /
    • 2010
  • Microbial fuel cell (MFC) is a promising renewable energy source that can generate electrical energy from organic wastes using microbe. This technology has been regarded as a future green alternative energy in that MFC makes use of organic-rich wastewater and also reduces waste sludges as well as produces electricity. To be practically realized, however, achieving higher power density than now is demanded, which may be possible by eliminating various negative factors to act as resistances in MFC operations. For instance, highly activated microbes, highly conductive electrode materials, and fast electron transfer between microbes and electrodes can lead to MFC with high power density. In particular, polymer electrolyte membranes are also a key component for improved MFC performance.

Settling Characteristics of Water Treatment Plant Sludges by Pretreatment Methods (정수장슬러지의 전처리에 의한 침전특성)

  • Moon, Yong-taik;Lee, Sun-ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.627-632
    • /
    • 2008
  • It is necessary to investigate methods for improvement by diagnosing sludge settling characteristics on inflow of slurry to thickener. The results of the settling tests are correlated to determine zone settling velocities at the various sludge solids concentrations. Conditioning of WTP residuals is generally done by either chemical or physical treatment. The settling test was conducted with 1m columns dosing polymer to WTP residuals at various solids concentration. The estimated results for dosing to WTP residuals for a sludge of 2,100 ~ 16,012 mg/L solids concentration were the zone settling velocities of 48.38 ~ 6.8 m/day, supernatant solid concentration of 3.2 ~ 19 mg/L and solid flux of $101.6{\sim}317.61kg/m^3{\cdot}day$. The values for non-polymer treatment were the zone settling velocities of 28.37 ~ 0.12 m/day, supernatent solid concentration of 8.5 ~ 108 mg/L and solid flux of $59.58{\sim}1.92kg/m^2{\cdot}day$. The limiting solid flux value by Yoshioka methods was $4.0kg\;TS/m^3{\cdot}day$ for Non-polymer and $228.0kg\;TS/m^3{\cdot}day$ for dosing polymer. These results are to indicate a possibility of improvement on the thickening characteristics and the quality of supernatant as increasing the settling velocities by dosing polymer to WTP residuals.

A Study of Desulfation Characteristics of Circulating Fluidized Bed Combustion for Domestic Anthracite (국내 무연탄의 순환류동층 보일러에서 탈황 특성 연구)

  • 정진도;김장우;하준호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.429-436
    • /
    • 2004
  • Circulating fluidized bed combustion (hereafter CFBC) technology enables an efficient combustion for the materials with low heating values such as high ash coal and sludges. It also has desulfation function by adding limestone directly to combustor. The CFBC has been considered as one of the best processes for low grade coal containing with large contents of ash and sulfur. In this paper, in order to various tests were performed to find the optimum desulfation condition for CFBC using Korean Anthracite. We surveyed possible parameters and conducted desulfation efficiency test in D Thermal Power Plant. In addition, the result of some fundamental theoretical consideration was discussed with CFBC. Optimum limestone size could be considered to be 0.1-0.3mm irrespective of combustion temperature and Ca/S molar ratio variation. Desulfation efficiency increased as the molar ratio increased. Because desulfation process occurs at the surface at higher temperature, inner side of limestone can't be utilized. When surface area is not appropriate, some SO$_2$ emit without reaction. Optimum molar ratio should be decided after considering chemical and physical properties of limestone and coal thoroughly such as particle size, pore size and HGI. Commercial CFBC is operated at Ca/S 1.6. Combustor temperature 840-87$0^{\circ}C$ shows good desulfation efficiency.

Microstructure and Physical Properties of Porous Material Fabricated from a Glass Abrasive Sludge (유리연마슬러지를 사용한 다공성 소재의 미세구조 및 물리적 특성에 관한 연구)

  • Chu, Yong-Sik;Kwon, Choon-Woo;Lee, Jong-Kyu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.277-283
    • /
    • 2006
  • A porous material with a surface layer was fabricated from glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20 min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and closed pores controlled water absorption. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The porous materials with $Fe_2O_3$ and graphite as the expanding agents had a low absorption ratio of about 3% or lower while the porous material with $CaCO_3$ as the expanding agent had a higher absorption ratio and more open pores.

The Use of Water Treatment Sludge as a Landfill Cover Material (정수장(淨水場) 슬러지의 매립장(埋立場) 복토재(覆土材)로의 활용(活用)에 관(關)한 연구(硏究))

  • Lee, Kee-chool;Oh, Joon-seong
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.67-76
    • /
    • 2002
  • Dewatered sludge of 400,000t/y from water treatment plants in Korea is being disposed through landfill and ocean dumping. However, the disposal is posing more and more serious environmental problems at the same time not only because of landfill site shortage in municipal suburbs, but because of the concern it will contaminate the oceans. In this study, the research on utilizing the sludge dried by flash dryer as covering soil in the landfill sites was carried out to solve these problems on environmental affinity. Both dewatered and dried sludge were exposed to the natural condition and observed according to the atmospheric changes. An experiment of soil engineering characteristics of the dried sludge and tests on mixed sludge(silty sandy soil : dried sludge = 10:90 ~ 30:70) such as particle size distribution, liquid and plastic limit, moisture content, specific gravity and compaction test were carried out. According to the compaction test, the compaction was confirmed as the optimum water content ratio was observed in the condition of SM-silty sand of particle size distribution, NP of liquid and plastic limit, 101.4% of moisture content, 2.04~2.12 of specific gravity. The results showed that dried sludges mixed with at least 30% of natural soil could be used as daily covering soil in the landfill sites.

  • PDF

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF

Manrfacturing Process of Solid Fuel Using Food Wastes and Paper Sludges (음식물 쓰레기와 제지슬러지를 이용한 고체연료 제조)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2010
  • Dry Process(natural drying, hot-air drying, oil fry drying), optimized mixture ratio and the condition of carbonization was carried out in order to improve the product durability develop eco-friendly solid fuel mixing food waste and paper sludge. As a result of the experiment, oil fry drying process was the fastest method for drying food waste and paper sludge mixture that contains 80% water inside, and the optimized mixture ratio to minimize the generating concentration of chlorine gas against caloric value of mixture ratio was 7:3. Additionally proper temperature of product carbonization was about $200^{\circ}C$ and shown increasing product durability through the carbonization. Therefore, the pelletized solid fuel be shaped diameter around 0.5cm, length 2cm under which was pulverized and molded using 7:3 mixture of food waste, and paper sludge was the eco-friendly solid fuel possible to be industrialized which is consist of chlorine concentration of below 2.0wt% and the lowest caloric value of over 5,000kcal/kg. In conclusion, this developing manufacturing process of the solid fuel can be interpreted to contribute alternative energy development in accordance with low carbon and green growth era.