• Title/Summary/Keyword: sludge water

Search Result 1,141, Processing Time 0.025 seconds

Analysis of RCSTP And MWTP Pollutants Treatment Efficiency in Bong-Hwa Gun (봉화군 마을하수도 및 하수처리장의 오염물질 처리 효율 분석)

  • Park, Minsoo;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Protected area of water for supply source is located mostly of rural area in Korea. Normally, sewage treatment system is poor to manage in rural, because low population and density. Rural area need sewage treatment system to supervise supply source of water. In this study, analysis on operation result of 4 RCSTP and MWTP is located at the rural area. Higher concentration of pollutant were inflows to MWTP than RCSTP, and effluent quality standard is satisfaction. However, RCSTP effluent pollutant concentrations was researched higher than MWTP. The organic matter(BOD, COD) were about 5% of a high treatment efficiency to a median. The nutrient(T-N, T-P) were detected Up to high 30%. Also, we analyzed to effect reactor operational parameters on the pollutant treatment efficiency like mixed liquer suspended solid(MLSS), dissolved oxygen(DO) and sludge retention time(SRT). As a result, pollutant treatment efficiency showed fluctuation in accordance with operating condition. Thus, it is necessary to manage the reactor operation condition for management of rural area sewage treatment.

Simultaneous Nitrification and Denitrification using Submerged MBR packed with Granular Sulfur and Non-woven Fabric (부직포 및 황 충진 MBR을 이용한 포기조내 동시 질산화/탈질에 관한 연구)

  • Moon, Jin-Young;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.439-446
    • /
    • 2009
  • This study was performed to evaluate SND(simultaneous nitrification and denitrification)efficiency, nitrogen removal efficiency and filtration function of non-woven fabric by using submerging MBR packed with granular sulfur covered with non-woven fabric filter. Synthetic wastewater was used as influent wastewater. Concentration of $NH_4{^+}-N$ in influent was maintained about 40 mg/L and the experiment was performed in four phases according to the flow rate. Nitrogen loading rate divided four phases ranging from $0.04 kg\;NH_4{^+}-N/m^3-day$ to $0.16 kg\;NH_4{^+}-N/m^3-day$. As a result, the maximum $NH_4{^+}-N$ removal rate was accomplished at $0.142 kg\;NH_4{^+}-N/m^3-day$ in nitrogen loading of $0.147 kg\;NH_4{^+}-N/m^3-day$. Nitrification efficiency was higher than 95% in all phases. $NO_3{^-}-N$ loading rate was adjusted ranging from $0.22 kg\;NO_3{^-}-N/m^3-day$ to $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal rate was accomplished up to $0.71 kg\;NO_3{^-}-N/m^3-day$ in $NO_3{^-}-N$ loading of $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal efficiency was 95% in $NO_3{^-}-N$ loading of $0.22 kg\;NO_3{^-}-N/m^3-day$. T-N removal rate was 90% and concentration of T-N in effluent was 3.7 mg/L in T-N loading rate of $0.039 kg\;NO_3{^-}-N/m^3-day$. In this study, TMP in reactor with and without non-woven fabric filter were observed to define fouling of hollow-fiber membrane module. Reaching time to standard washing pressure(22 cm Hg) of two reactors were 29 days with non-woven fabric But the reactor without non-woven fabric reached standard washing pressure only after 4 days. Accordingly, non-woven fabric was demonstrated the superiority as a filtration ability. With high nitrogen removal rate and decreasing of fouling of membrane, MBR packed with granular sulfur covered with non-woven fabric filter submerging in activated sludge aeration tank can be used as an advanced treatment process.

The Study of the Need to Remove Soluble nitrogen ($NH_3-N$) Generated from Anaerobic digestor Retrofitted in Municipal Wastewater Treatment Plants (하수처리장 에너지자립화사업에서 혐기성소화공정으로부터 용출되는 용존성질소($NH_3-N$)의 처리 필요성 연구)

  • Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.68-75
    • /
    • 2014
  • Soluble nitrogen produced from anaerobic digestor is able to have a strong influence on the effluent water quality of municipal wastewater treatment plants during a winter season in particular. The modeling results using the GPS-X simulation software shows that the soluble nitrogen concentration generated from the anaerobic digestor is 214.1 mg/L in the return flow and 6.2 mg/L in the inflow of the primary settler higher than those in nonexistence of the anaerobic digestor, respectively. In the case of using a separation process (flotation thickener) in order to treat the return flow from the sludge treatment system, the soluble nitrogen concentration in the effluent from the separation process and in the inflow of the primary setter could be 6.0 mg/L higher and 0.7 mg/L lower than those of nonexistence of the process, respectively. The modeling results propose the need of the equipments to be able to remove the soluble nitrogen ($NH_3-N$) produced from the digestor in the improvement projects of anaerobic digestor in municipal wastewater treatment plants.

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

A Study on Optimal Packing Volume of Media in Swirl Flow Biological Fluidized Bed (선회류 생물학적 유동상의 최적 메디아 충전량에 관한 연구)

  • Choi, Doo-Hyoung;Kim, Hwan-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.331-340
    • /
    • 2000
  • The existing two-phase biological fluidized bed has some problems such as limit of oxygen transfer and blockade of fluidized distributor. In this study, three-phase swirl flow biological fluidized bed has designed to solve the problems and to investigate its running characteristics. TOC of influent synthetic wastewater was approximately $70mg/{\ell}$. HRT of reactor was 1.6 hours. Mean particle size of sand, as packing media, was 0.397mm and packing volume was varied from $200m{\ell}/{\ell}$ to $600m{\ell}/{\ell}$ by stages in the bed. The amount of biomass and effluent water quality was throughly investigated in the bed. Showing experiment results from the above conditions, it was possible to solve the problems of existing fluidized bed and to keep DO of $3mg/{\ell}$ or more. And it was also TOC removal rate of 91 to 94 %, MLVSS of 2,360 to $3,860mg/{\ell}$, MLVSS per g-media of 8.4 to 17.3 mg/g, F/M ratio of 0.59 to $1.04kg-TOC/kg-MLVSS{\cdot}day$, biofilm thickness of $35{\sim}71{\mu}m$ and sludge productivity of 1.03 to $2.35kg-SS/m^3{\cdot}day$. Optimal conditions in this experimental were as follows.; those were biofilm thickness of approximately $54{\mu}m$. MLVSS per g-media of 13 mg and media packing volume of 350 to $400m{\ell}/{\ell}$ when F/M ratio was low, treatment efficiency was high and sludge productivity was low. Showing the media with optics microscope in this optimal condition, attached microbes such as Epistylis sp. were observed. From SEM photographs, it showed that Coccus adhere to and grow on the media surface.

  • PDF

Changes of the Substances during Composting of Seafood Processing Wastewater Sludge (수산가공폐수슬러지의 퇴비화과정중 물질변화)

  • Lee, Hong-Jae;Back, Song-Bum;Kim, Woo-Seong;Park, Hyun-Geoun;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.55-69
    • /
    • 2001
  • To study the possibility of agricultural utilization of seafood processing wastewater sludges, the changes of temperature and humus, the form of organic matter and nitrogen and the germination ratio of plant during the composting were investigated. The results were summarized as follows. Temperature was rapidly increased at early stage of composting, reached to $67{\sim}76^{\circ}C$ in highest temperature at 3~5 days, and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 19 days after composting, at the point was upset firstly. The third upset was conducted at 60days after composting, and then the temperature was little changed. The contents of total organic matters in the compost for composting were down 4.5~8.0%. Ether extractable materials, resins and hemicellulose contents of the organic matters for composting were decreased with 35~77%, 32~69% and 19~30%, respectively. And cellulose, lignins and unknown materials contents in the organic matters for composting were increased a little, but water soluble polysaccharides of organic matters were little changed. Total nitrogen, amino sugar and amino acid nitrogen contents in the compost for composting were decreased with 20~42%, 11~49% and 23~65%, respectively. The contents of humic acid in the compost for composting were little changed, but contents of fulvic acid in the compost for composting were decreased gradually. Germination ratio of radish, chinese cabbage and cucumber were over 90%, when the compost produced at 30 days after composting was tested on plant germination.

  • PDF

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

Development of Energy Saving Aeration Panel for Aerating in Activated Sludge System (활성 슬러지조 폭기를 위한 에너지 절감형 판형 멤브레인 산기장치의 개발)

  • Kim, Ji Tae;Tak, Hyon Ki;Kim, Jong Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.414-420
    • /
    • 2012
  • In an effort to commercialization of energy saving aeration apparatus, panel-type aeration membranes were prepared from polyurethane sheet of J company in Korea having tensile strength higher than $400kg_f/cm^2$ with thickness of 0.5mm. Micropores of 100 m size were made by poring technique utilizing needles. From lab-tests in 450 L water tank at temperature of $20^{\circ}C$, the performance of aeration panels at 40 L/min aeration rate showed 5 mg/L DO in less than 3 minutes approaching saturation point of 8 mg/L within 8 minutes. The results show very high efficiency with $K_{La(15)}$ ($16.34hr^{-1}$), Standard oxygen transfer efficiency (SOTE 54.7%) and Standard aeration efficienct (SAE 7.88 kg/kwh). Other pilot scale test in a $2m^3$ water tank with water temperature ($19^{\circ}C$) and aeration rate (30 L/min) showed DO exceeding 5 mg/L within 8 minutes along with $K_{La(15)}$ ($5.8hr^{-1}$), SOTE (42.1%) and SAE (6.41 kg/kwh). These efficiencies represent 2~2.5 times higher than conventional aeration devices. Especially, the achievement of higher Oxygen Transfer Rate indicate higher commercial viability. Conventional aeration devices when applied to clean water and wastewater frequently cause problems due to differences in actual Oxygen Transfer Rate. Our actual tests with $40^{\circ}C$ animal farm wastewater resulted very high efficiencies with Oxygen transfer efficiency ($OTE_f$ 22.1%) and $OTE_{pw40}$ (39.6%).

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.

Production of Pellet Fertilizer from the Sludge of Thermophilic Aerobic Oxidation System End Its Effects on the Growth of Chinese cabbage and Soil Properties (고온 호기성 산화 시스템의 슬러지로부터 펠렛 비료의 생산과 Chinese cabbage의 생육 및 토양 특성에 대한 영향)

  • Lee Won Il;Hirotada Tsujii;Lee Myung Gyu
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • A solid of Thermophilic Aerobic Oxidation(TAO) System was mixed with sawdust or a rice husks. After fermentation was finished, molding machine and a dryer were used, and pellet fertilizer was produced. The fertilizing experiment was carried out as five pieces by Bed soil, TAO solid(TAO-S), TAO pellet fertilizer(TAO-PF), Chemical fertilizer(NPK) and Control(no fertilizer). Growth rate of the Chinese cabbage by each treatment was examined. Analysis of microbe and soil characteristic before and after crop experiment were carried out. When the moisture contents of TAO-PF were $18\%$ and $25\%$, the occurrence rate of microbes for the storage time was increased to $80\%$ and $100\%$ respectively. However, in the $12\%$ of water content treatment was not increased microbes. The concentration of soil bacteria in TAO-PF and TAO-S for 15 day after treatment was $1.5\times10^7\~8.0\times10^7$ CFU/ml, and the concentration of bacteria for 50 day was increased to $6.3\times10^7$ and $8.3\times10^7$ CFU/ml. However, Fungus decreased. The concentration of Actinomycetes was increased in TAO solid, Bed soil and TAO-PF treatment. The TAO-S and TAO-PF treatment were normal to compare to the NPK treatment. In this experiment the height and width of the Chinese cabbage were 22.3 cm, 16.8 cm in Bed soil and 28.8 cm, 21.3 cm in TAO solid. The leaf number of TAO-S, TAO-PF and NPK treatment were similar to 39.8, 38.3, 40.3 sheet. As the result, the TAO-PF knew that use was possible with fertilizer.

  • PDF