• Title/Summary/Keyword: slow-start

Search Result 85, Processing Time 0.019 seconds

Gallop-Vegas: An Enhanced Slow-Start Mechanism for TCP Vegas

  • Ho Cheng-Yuan;Chan Yi-Cheng;Chen Yaw-Chung
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.351-359
    • /
    • 2006
  • In this article, we present a new slow-start variant, which improves the throughput of transmission control protocol (TCP) Vegas. We call this new mechanism Gallop-Vegas because it quickly ramps up to the available bandwidth and reduces the burstiness during the slow-start phase. TCP is known to send bursts of packets during its slow-start phase due to the fast window increase and the ACK-clock based transmission. This phenomenon causes TCP Vegas to change from slow-start phase to congestion-avoidance phase too early in the large bandwidth-delay product (BDP) links. Therefore, in Gallop-Vegas, we increase the congestion window size with a rate between exponential growth and linear growth during slow-start phase. Our analysis, simulation results, and measurements on the Internet show that Gallop-Vegas significantly improves the performance of a connection, especially during the slow-start phase. Furthermore, it is implementation feasible because only sending part needs to be modified.

Modified Slow Start Algorithm for Network Congestion Control (통신망의 혼잡제어를 위한 변형된 slow start 알고리즘)

  • Nam, Ji-Seung;Jo, Jin-Yong;Im, Jeong-Gyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2451-2459
    • /
    • 1999
  • The improvement of network systems makes the world be near at hand. Due to the technological progress, we can send or receive a large amount of data in a short time over computer networks. However, the data overflow on the network can cause severe congestion. So we need to control it more efficiently. One of the control methods is a slow start. In this paper, we proposed a amended slow start for network congestion and tested its efficiency.

  • PDF

Mathematical Model for Mean Transfer Delay of Web Object in Initial Slow Start Phase (초기 슬로우 스타트 구간에서 웹 객체의 평균 전송 시간 추정을 위한 수학적 모델)

  • Lee, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.248-258
    • /
    • 2008
  • Current Internet uses HTTP (Hyper Text Transfer Protocol) as an application layer protocol and TCP (Transmission Control Protocol) as a transport layer protocol to provide web service. SCTP (Stream Control Transmission Protocol) is a recently proposed transport protocol with very similar congestion control mechanisms as TCP, except the initial congestion window during the slow start phase. In this paper, we present a mathematical model of object transfer latency during the slow start phase for HTTP over SCTP and compare with the latency of HTTP over TCP. Validation of the model using experimental result shows that the mean object transfer latency for HTTP over SCTP during the slow start phase is less than that for HTTP over TCP by 11%.

Slow-start Algorithm to Improve the Quality of TFRC based Streaming Service (TFRC 기반의 스트리밍 서비스 품질 향상을 위한 Slow-start 알고리즘)

  • Lee, Sung-Hee;Chung, Kwang-Sue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.346-347
    • /
    • 2012
  • 네트워크의 안정성을 보장하면서 멀티미디어 스트리밍 서비스의 품질을 향상시키기 위해서 TFRC(TCP-Friendly Rate Control) 프로토콜이 제안되었다. 그러나 TFRC의 Slow-start 알고리즘은 TCP와 같이 가용대역폭을 초과하여 패킷을 전송하는 오버슈트 (Overshoot) 문제로 인해 스트리밍 비디오 화질을 열화시키는 패킷 손실을 발생시킨다. 본 논문에서는 TFRC의 오버슈트에 의한 패킷 손실을 줄이기 위한 Slow-start 알고리즘을 제안한다. 제안하는 알고리즘은 네트워크의 혼잡 정도에 따라서 전송률의 증가량을 감소시킴으로써 패킷 손실을 감소시켰다. 시뮬레이션을 통해서 제안하는 알고리즘이 기존의 Slowstart 알고리즘 보다 적은 패킷 손실을 발생시키는 것을 보였다.

Mean Transfer Time for SCTP in Initial Slow Start Phase (초기 슬로우 스타트 단계에서 SCTP의 평균 전송 시간)

  • Kim, Ju-Hyun;Lee, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.32 no.2
    • /
    • pp.199-216
    • /
    • 2007
  • Stream Control Transmission Protocol(SCTP) is a transport layer protocol to support the data transmission. SCTP is similar to Transmission Control Protocol(TCP) in a variety of aspects. However, several features of SCTP including multi-homing and multi-streaming incur the performance difference from TCP. This paper highlights the data transfer during the initial slow start phase in SCTP congestion control composed of slow start phase and congestion avoidance phase. In order to compare the mean transfer time between SCTP and TCP, we experiment with different performance parameters including bandwidth, round trip time, and data length. By varying data length, we also measure the corresponding initial window size, which is one of factors affecting the mean transfer time. For the experiment, we have written server and client applications by C language using SCTP socket API and have measured the transfer time by ethereal program. We transferred data between client and server using round-robin method. Analysis of these experimental results from the testbed implementation shows that larger initial window size of SCTP than that of TCP brings the reduction in the mean transfer time of SCTP compared with TCP by 15 % on average during the initial slow start phase.

Governor upgrade for PWR NPP safety related Emergency Diesel Generator (경수로형 원자력 안전등급 비상디젤발전기)

  • Kim, Yoon Sik;Jeon, Il-Young;Song, Dong-Young;Kim, Chang-Kook;Sim, Su-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.293-298
    • /
    • 2005
  • The following is final report for governor upgrade for PWR NPP safety related EDG Kori NPP No.2 Unit. The upgraded system includes more beneficial function like as "Slow start with starting ramp", "Generator load sensing & control capability" and "Emergency ramp during slow start". This paper show functional operation of slow start regime according to NRC regulatory guide which guide regulation to NPP safety related environment.

  • PDF

Performance upgrade and analysis report for nuclear safety related emergency diesel generator speed control system (원전 안전등급 비상디젤발전기 속도제어시스템 성능개선 및 분석에 관한 연구)

  • Kim, Y.S.;Jeon, I.Y.;Lee, S.G.;Kim, C.K.;Ahn, J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.581-583
    • /
    • 2005
  • The paper is final report for speed control upgrade and analysis report which recently performed on PWR NPP safety related EDG KHNP Ulchin NPP No.2 Unit. The upgraded system includes more beneficial function like as 'Slow start with starting ramp', 'Generator load sensing & control capability' and 'Emergency ramp during slow start'. This paper shows functional operation of slow start regime according to NRC regulatory guide which guide regulation to NPP safety related environment.

  • PDF

Network Adaptive Congestion Control Scheme to Improve Bandwidth Occupancy and RTT Fairness in HBDP Networks (HBDP 네트워크에서 대역폭 점유와 RTT 공정성 향상을 위한 네트워크 적응적 혼잡제어 기법)

  • Oh, Junyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1162-1174
    • /
    • 2015
  • These days, the networks have exhibited HBDP (High Bandwidth Delay Product) characteristics. The legacy TCP slowly increases the size of the congestion window and drastically decreases the size of a congestion window. The legacy TCP has been found to be unsuitable for HBDP networks. TCP mechanisms for solving the problems of the legacy TCP can be categorized into the loss-based TCP and the delay-based TCP. Most of the TCP mechanisms use the standard slow start phase, which leads to a heavy packet loss event caused by the overshoot. Also, in the case of congestion avoidance, the loss-based TCP has shown problems of wastage in terms of the bandwidth and RTT (Round Trip Time) fairness. The delay-based TCP has shown a slow increase in speed and low occupancy of the bandwidth. In this paper, we propose a new scheme for improving the over shoot, increasing the speed of the bandwidth and overcoming the bandwidth occupancy and RTT fairness issues. By monitoring the buffer condition in the bottleneck link, the proposed scheme does congestion control and solves problems of slow start and congestion avoidance. By evaluating performance, we prove that our proposed scheme offers better performance in HBDP networks compared to the previous TCP mechanisms.

Congestion Control Scheme for Efficient Multimedia Transmission in Broadband Wireless Networks (광대역 무선 네트워크에서 효율적인 멀티미디어 전송을 위한 혼잡 제어 기법)

  • Lee, Eunjae;Chung, Kwangsue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1599-1609
    • /
    • 2014
  • TCP does not ensure the bandwidth and delay bound required for multimedia streaming services in broadband wireless network environments. In this paper, we propose a new congestion control scheme for efficient multimedia transmission, called COLO TCP (Concave Increase Slow Start Logarithmic Increase Congestion Avoidance TCP). The COLO TCP prevents the burst packet loss by applying the concave increase algorithm in slow start phase. In the congestion avoidance phase, COLO TCP uses the logarithmic increase algorithm that quickly recovers congestion window after packet loss. To highly utilize network bandwidth and reduce packet loss ratio, COLO TCP uses additive increase algorithm and adaptive decrease algorithm. Through simulation results, we prove that our COLO TCP is more robust for random loss. It is also possible for efficient multimedia transmission.

Enhanced TFRC for High Quality Video Streaming over High Bandwidth Delay Product Networks

  • Lee, Sunghee;Roh, Hyunsuk;Lee, Hyunwoo;Chung, Kwangsue
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.344-354
    • /
    • 2014
  • Transmission control protocol friendly rate control (TFRC) is designed to mainly provide optimal service for unicast applications, such as multimedia streaming in the best-effort Internet environment. However, high bandwidth networks with large delays present an environment where TFRC may have a problem in utilizing the full bandwidth. TFRC inherits the slow-start mechanism of TCP Reno, but this is a time-consuming process that may require many round-trip-times (RTTs), until an appropriate sending rate is reached. Another disadvantage inherited from TCP Reno is the RTT-unfairness problem, which severely affects the performance of long-RTT flows. In this paper, we suggest enhanced TFRC for high quality video streaming over high bandwidth delay product networks. First, we propose a fast startup scheme that increases the data rate more aggressively than the slow-start, while mitigating the overshooting problem. Second, we propose a bandwidth estimation method to achieve more equitable bandwidth allocations among streaming flows that compete for the same narrow link with different RTTs. Finally, we improve the responsiveness of TFRC in the presence of severe congestion. Simulation results have shown that our proposal can achieve a fast startup and provide fairness with competing flows compared to the original TFRC.