• Title/Summary/Keyword: slope variation

Search Result 552, Processing Time 0.027 seconds

Repassivation Characteristics of Fe-Cr Steels Using the Abrading Electrode Technique in Aqueous 0.1M $Na_2SO_4+ NaCl$ Solutions (0.1M $Na_2SO_4+ NaCl$ 수용액에서 마멸 전극 기법을 이용한 Fe-Cr강의 재부동태 특성)

  • Ham Dong Ho;Lee Jae Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.195-201
    • /
    • 1999
  • The repassivation characteristics of Fe-Cr steels in deaerated 0.1 M $Na_2SO_4$ solution have been investigated with the variation of Cr content, applied potential and Cl- concentration. In the absence of chloride ion, abrading electrode test showed that, slope -n, of log i=k -n log t, a parameter of repassivation rate, approached to -1, regardless of Cr content but as Cr content increased, repassivation current density decreases with increasing Cr content. A.C. Impedance spectroscopy showed that the charge transfer resistance of passive film became higher as Cr content and applied potential increased. However, in the presence of chloride ion, it was observed that chloride ion suppressed the passive film formation, whose effect became greater with increasing applied potential.

Effects of Seasonal Wind Stress on the Formation of the Tsushima Warm Current (대마난류 형성에 미치는 계절별 바람의 영향)

  • 남수용;석문식;방인권;박필성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.364-374
    • /
    • 1994
  • The separation mechanism of the Tsushima Warm Current and the effects of seasonal wind stress on the separation position are studied by use of a barotropic numerical model. The grid spacing of 0.25$^{\circ}$ both in latitude and longitude is used in the model, and Hellerman and Rosenstein's wind (1983) is applied to the sea surface as seasonal wind stress. According to the model results, during winter seasons (from October to March) when northly wind is prevailing, the Tsushima Warm Current is formed by direct separation from the Kuroshio on the continental slope southwest of Kyushu. On the other hand, during summer seasons (from April to September), the Taiwan Current that flows through the Taiwan Strait seems to be the origin of the Tsushima Warm Current. The Kuroshio reaches its maximum transport during winter seasons, and the minimum during summer. The transport of the Taiwan Current shows a phase lag of about 160$^{\circ}$ relative to the Kuroshio. The transport variation of the Tsushima Warm Current agrees with that of the Kuroshio when the former is shifted by 120$^{\circ}$(about 4 months).

  • PDF

Calculation of Expected Damage to Breakwater Armor Blocks Considering Variability In Wave Direction (파향의 변동성을 고려한 방파제 피복 블록의 기대피해 계산)

  • 서경덕;권혁민;윤현덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.21-32
    • /
    • 2003
  • In this study, the reliability design method developed by Hanzawa et al. in 1996 for calculation of the expected damage to armor blocks of a horizontally composite breakwater is extended to take into account the variability in wave direction such as directional spreading of waves, obliquity of the design principal wave direction from the shore-normal direction, and its variation about the design value. To calculate the transformation of random directional waves. the model developed by Kweon et al. in 1997 is used instead of Goda's model, which was developed in 1975 for unidirectional random waves normally incident to a straight coast with parallel depth contours and has been used by Hanzawa et al. It was found that the variability in wave direction had great influence on the computed expected damage to armor blocks. The previous design, which disregarded wave directionality, could either overestimate or underestimate the expected damage by a factor of two depending on water depth and seabed slope, if the assumption of the present study that the stability formula for breakwater armor blocks proposed for normal incidence can be used for obliquely incident waves is valid.

Seasonal Variation of Meteor Decay Times Observed at King Sejong Station ($62.22^{\circ}S$, $58.78^{\circ}W$), Antarctica

  • Kim, Jeong-Han;Kim, Yong-Ha;Lee, Chang-Sup;Jee, Geon-Hwa
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.29.4-30
    • /
    • 2010
  • A VHF meteor radar at King Sejong Station ($162.22^{\circ}S$, $58.78^{\circ}W$), Antarctica has been observing meteors during a period of March 2007-July 2009. We analyzed the height profiles of the observed meteor decay times between 70 and 95 km by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season in the range of 80~85 km: higher peak in southern spring and summer than in fall and winter. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal, as effective recombination rates measured by rocket experiments. The height profiles of 15-min averaged decay times show a clear increasing trend with decreasing altitude from 95 km to the peak altitude, especially for weak meteors. This feature for weak meteors is well explained by ambipolar diffusion of meteor trails, allowing one to estimate atmospheric temperatures and pressures, as in previous studies. However, the strong meteors show not only significant scatters but also different slope of the increasing trend from 95 km to the peak altitude. Therefore, atmospheric temperature estimation from meteor decay times should be applied for weak meteors only. In this study, we present the simple model decay times to explain the height profiles of the observed decay times and discuss the additional removal processes of meteor trail electrons through the empirical recombination and by icy particles.

  • PDF

A STUDY ON AMALGAM CAVITY FRACTURE WITH TWO DIMENSIONAL FINITE ELEMENT METHOD I : VARIATION OF THE WIDTH OF CAVITY (아말감 와동의 파절에 관한 2차원 유한요소법적 연구 I : 와동 폭의 변화)

  • Kim, Han-Wook;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.655-669
    • /
    • 1995
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus is very important. In this study, amalgam 0 cavity was prepared on maxillary first premolar. Two dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2, 2/3 of intercuspal distance) were varied. Three or four-nodal mesh were used for the two dimensional finite element models. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. 1S model was sound tooth with no amalgam cavity. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed von Mises stress, 1 and 2 directional normal stress and Y and Z axis translation with FEM software Super SAPII Version 5.2 (Algor Interactive System Co.) and hardware 486 DX2 PC. The results were as :follows : 1. 1S model was slightly different with 1B model in stress distibution. 1S, 2B, 3B, 4B models showed similiar stress distribution. 2. 1S model and four B models showed similiar pattern in Y axis and Z axis translation. 3. 1S model and four B models showed the bending phenomenon in the translation. 4. As increasing of the width of the cavity, experimental group was similiar with the control group in stress distribution. 5. As increasing of the width of the cavity, experimental group was similiar with the control group in Y and Z axis tranlation.

  • PDF

A Study on the Characteristic of Heat Transfer of PCM(Phase Change Material) at the Simultaneous Charging and Discharging Condition (동시 축·방열 조건에서 PCM의 열전달 특성에 관한 연구)

  • Lee, Donggyu;Park, Sechang;Chung, Dong-yeol;Kang, Cheadong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.305-310
    • /
    • 2016
  • A thermal storage systems was designed to correspond to the temporal or quantitative variation in the thermal energy demand, and most of its heat is stored using the latent and sensible heat of the heat storage material. The heat storage method using latent heat has a very complex phenomenon for heat transfer and thermal behavior because it is accompanied by a phase change in the course of heating/cooling of the heat storage material. Therefore, many studies have been conducted to produce an experimentally accessible as well as numerical approach to confirm the heat transfer and thermal behavior of phase change materials. The purpose of this study was to investigate the problems encountered during the actual heat transfer from an internal storage tank through simulation of the process of storing and utilizing thermal energy from the thermal storage tank containing charged PCM. This study used analysis methods to investigate the heat transfer characteristics of the PCM with simultaneous heating/cooling conditions in the rectangular space simulating the thermal storage tank. A numerical analysis was carried out in a state considering natural convection using the ANSYS FLUENT(R) program. The result indicates that the slope of the liquid-solid interface in the analysis field changed according to the temperature difference between the heating surface and cooling surface.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Energy Performance Variation of Solar Water Heating System by LCC Optimization in an Office Building (사무소 건물 태양열급탕시스템의 LCC 최적화에 따른 에너지성능 변화 분석)

  • Ko, Myeong-Jin;Choi, Doo-Sung;Chang, Jae-Dong;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • This study examined the energy performance according to the main design parameters of a solar water heating system for an office building using the life cycle cost (LCC) optimization simulations. The LCC optimization simulations of the system were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the global radiation incident on the collector could be decreased by 16.98% and 28.52%, collector useful energy gain could be decreased by 15.04% and 22.59%, energy to load from storage tank could be decreased by 10.86% and 18.06% and AH energy to load could be increased by 16.86% and 38.50% respectively compared to a non-optimized system. The annual average collection efficiency of the collector was increased by 0.88% for $60^{\circ}C$ and 2.78% for $50^{\circ}C$ because of increase of collector slope and decrease of the mass flow rate per collector area. The annual average efficiency of the system was increased by 1.74% and 3.47% compared to the basis system. However, the annual solar fraction of the system was decreased by 6.68% for $60^{\circ}C$ and 11.26% for $50^{\circ}C$ due to decrease of collector area and storage tank volume.

An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020 (2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석)

  • Kim, Hae-Min;Nam, Hyoung-Gu;Kim, Baek-Jo;Jee, Joon-Bum
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

Characteristics of Vowel Formants, Voice Intensity, and Fundamental Frequency of Female with Amyotrophic Lateral Sclerosis using Spectrograms (스펙트로그램을 이용한 근위축성측삭경화증 여성 화자의 모음 포먼트, 음성강도, 기본주파수의 변화)

  • Byeon, Haewon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.193-198
    • /
    • 2019
  • This study analyzed the changes of vowel formant, voice intensity, and fundamental frequency of vowels for 11 months using acoustochemical spectrogram analysis of women diagnosed with amyotrophic lateral sclerosis (ALS). The test word was a vowel /a, i, u/ and a diphthong /h + ja + da/, /h + wi + da/, and /h +ɰi+ da/. Speech data were collected through the word reading task presented on the monitor using 'Alvin' program, and the recording environment was set to 5,500 Hz for the nyquist frequency and 11,000 Hz for the sampling rate. The records were analyzed by using spectrograms to vowel formants, voice intensity, and fundamental frequency. As a result of analysis, the fundamental frequency and intensity of the ALS process were decreased and the formant slope of the diphthong was decreased rather than the formant change in the vowel. This result suggests that the vowel distortion of ALS due to disease progression is due to the decrease of tongue and jaw co morbidity.