• Title/Summary/Keyword: slope terrain

Search Result 269, Processing Time 0.025 seconds

Optimal Power Maintain of Electric Wheelchair by using Applying Complementary Filter on the Smart Control System (최적의 전동휠체어 시트 평형유지를 위한 상호보안 필터 기반의 스마트 제어 시스템 연구)

  • Park, Sanghyun;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • In this paper, we propose a system for controlling the seat of the electric wheelchair depending on the slope of the terrain in real time by using the ATmega smart control based on the board. Smart control board includes a gyro sensor, an acceleration sensor and Tilt sensor, when the electric wheelchairs pass slope of the terrain, they use three sensors to identify terrain configuration in real time. We also applied the Complementary Filter in the gyro sensor and acceleration sensor, so the electric wheelchairs know the exact terrain by solving the interference during the movement. Based on this, the noise power wheelchair due to the movement will be reduced, the seat continues reliably movement without being vibration. In this paper, providing an application on the smart phone platform for the convenience of users who are not familiar with how to use electric wheelchairs, they can easily control wheelchairs. Control platform of the smart phone is able to monitor the electric wheelchair in real-time, with regard to pressure prevention, help the slope of the seat to be arbitrarily controlled.

Application of the Gradient-Based 3D Patch Extraction Method to Terrain and Man-made Objects for Construction of 3D CyberCity (3차원 사이버도시구축을 위한 그래디언트기반 3차원 평면추출기법의 지형 및 인공지물지역에의 적용에 관한 연구)

  • Seo, Su-Young
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.227-229
    • /
    • 2010
  • This study presents an application of the 3D patch extraction method which is based on gradient-driven properties to obtain 3D planar patches over the terrain and man-made objects from lidar data. The method which was exploited in this study is composed of a sequence of processes: segmentation by slope, initiation of triggering patches by mode selection, and expansion of the triggering patches. Since urban areas contain many planar regions over the terrain surface, application of the method has been experimented to extract 3D planar patches not only from non-terrain objects but also from the terrain. The experimental result shows that the method is efficient to acquire 3D planar patches.

  • PDF

Spatial Analysis of Precipitation with PRISM in Gangwondo (강원도 지역의 PRISM를 이용한 강우의 공간분포 해석)

  • Um, Myoung-Jin;Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.179-188
    • /
    • 2011
  • In this study, the regional factors in Gangwondo were used to analysis the relationship between point precipitation and areal precipitation. The most province area in Gangwondo is consist of mountainous terrain. At the east part of the Taebaek Mountains, the slope is very steep and the coastal plains don't exist. At the west part of the Taebaek Mountains, the slope is mild, there are many rivers, such as South Han-river and North Han-river, and the regions are very complex terrain. The data of 66 stations in Gangwondo and the PRISM (Parameter-elevation Regression on Indepedent Slope Model) were used to estimate the spatial distribution of precipitation. According to the topographic conditions, such as elevation and slope, and the regional conditions, such as Youngdong and Youngseo, the spatial distribution of precipitation is well shown. At the results of cross-validation, the RRBIAS and the RRMSE are under 0.1 and therefore the analysis of the PRISM are well conducted. Consequently the PRISM in this study is a appropriate method to estimate the spatial distribution of precipitation in Gangwondo.

Performance Analysis of Batch Process Terrain Relative Navigation Using Area based Terrain Roughness Index for Lunar Lander (영역기반 지형 험준도 지수를 이용한 달착륙선의 일괄처리방식 지형상대항법 성능분석)

  • Ku, Pyung-Mo;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.629-639
    • /
    • 2016
  • Batch process TRN(Terrain Relative Navigation) using an altimeter is a technique to correct position by correlating a series of periodically measured terrain height profile and terrain height candidate profile of the DEM(Digital Elevation Map). However, it is generally known that the performance of TRN is degraded when measured terrain height profile and terrain height candidate profiles of the DEM are similar at hill or repetitive terrain. In this paper, area based terrain slope roughness index[11] is applied and area based terrain curvature roughness index which can detect similarity of terrain in ROI(Region Of Interest) is proposed to overcome this problem. Applying terrain roughness indexes to terrain relative navigation system of lunar lander, it is shown that TRN using area based terrain roughness results in improved performance compared to conventional trajectory based method through simulation.

Application of GIS for Selection of Logging Operation Machine (벌출작업 기종의 선정을 위한 GIS 활용)

  • Jeon, Kwon-Seok;Ma, Ho-Seop
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.85-97
    • /
    • 2003
  • This study was aimed at suggest a proper logging method of mountain forest using geographic information system(GIS) based on digital terrain model(DTM) in the National Forest at Mt. Kumsan in Namhae-gun, Gyungsangnam-do, which has about 2,948 ha in area. The areal percentage of 201 to 250m in the elevation was about 15.5%, elevation of 251 to 300m was 14.5%, and 78.75% for higher than 400m. The accumulated areal percentage of below 30% in the gradient was 17.2%, and 81.0% for steeper than 60%. The area for tractor skidding was 17.2%(511.7ha), the area for tractor attached winch skidding was 63.8%(1,896.3ha) and 18.4%(545.5ha) for cable yarding. It is important to choose the proper logging machines for timber harvesting. In general, the selection of logging operation system was affected several major environmental factors like as terrain conditions(slope gradient, slope length) and stand factors. The rate of middle slope gradients in terrain conditions showed higher than that of steep slope gradients in this area. Therefore, it considered that the logging operation system in this area could apply to tractor+winch operating machine according to terrain conditions.

  • PDF

3D Stereoscopic Terrain Extraction of Road Cut Failure Slope Using Unmanned Helicopter Photography System (무인 헬리콥터 사진촬영시스템을 이용한 도로 절개지 붕괴사면 3차원 입체 지형 추출)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • Acquisition of information on failure slope, which may cause apprehension of second hand damage, requires acquisition of fast and accurate topographical data and efficient expression in indirect surveying method without accessing as needed. Therefore, in this study, the images on the intended area were photographed through hovering in the air by approaching collapsed road cut slope with the use of unmanned helicopter photography system. As a result of comparing the points observed by no prism total station and the 10 coordinate points analyzed through image analysis, the averages of absolute values were shown to be 0.056m in X axis direction, 0.082m in Y axis direction and 0.066m Z axis direction. In addition, the RMSE of the error for 10 points of test points were 0.015636m in X axis direction, 0.021319m in Y axis direction and 0.018734m in Z axis direction. Therefore, this method can determine the range of slope and longitudinal and cross sections of each slope in dangerous area that cannot be approached in relational image matching method for the terrains of such collapsed cut slope.

A Refinement of WAsP Prediction in a Complex Terrain (복잡지형에서의 WAsP 예측성 향상 연구)

  • Kyong, Nam-Ho;Yoon, Jeong-Eun;Jang, Moon-Seok;Jang, Dong-Soon;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2003
  • The comparative performance of the WAsP in calculating the wind climate in complex terrain has been examined in order to test the predictability of the wind resource assessment computer code in our country. An analysis was carried out of predicted and experimental 10-min averaged wind data collected over 8 months at four monitoring sites in SongDang province, Jeju island, composed of sea, inland flat terrain, a high and a low slope craters. The comparisons show that the WAsP preditions give better agreement with experimental data by adjusting the roughness descriptions, the obstacle list.

A Study on High-Precision Digital Map Generation Using Ground LiDAR (지상 LiDAR를 이용한 고정밀 수치지도 생성에 관한 연구)

  • Choi, Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • The slope of the road in the forest area has a characteristic of steep slope, so natural disasters such as slope collapse occur. The slope displacement observation technique according to landslide is being studied as a method to observe a wide area and a method to observe a small area. This is a study on high-precision digital map generation using ground LiDAR. It is possible to create a high - precision digital map by minimizing the US side using the 3D LiDAR in the steep slope area where the GPS and Total Station measurement are difficult in the maintenance of the danger slope area. It is difficult to objectively evaluate whether the contour lines generated by LiDAR are correct and it is considered necessary to construct a test bed for this purpose. Based on this study, if terrain changes such as landslides occur in the future, it will be useful for measuring slope displacement.

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

Distance Transform Path Planning using DEM and Obstacle Map (DEM과 장애물 지도를 이용한 거리변환 경로계획)

  • Choe, Tok-Son;Jee, Tae-Young;Kim, Jun;Park, Yong-Woon;Ryu, Chul-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.92-94
    • /
    • 2005
  • Unmanned ground vehicles(UGVs) are expected to play a key role in the future army. These UGVs would be used for weapons platforms. logistics carriers, reconnaissance, surveillance, and target acquisition in the rough terrain. Most of path planning methodologies for UGVs offer an optimal or sub-optimal shortest-path in a 20 space. However, those methodologies do not consider increment and reduction effects of relative distance when a UGV climbs up or goes down in the slope of rough terrain. In this paper, we propose a novel path planning methodology using the modified distance transform algorithm. Our proposed path planning methodology employs two kinds of map. One is binary obstacle map. The other is the DEM. With these two maps, the modified distance transform algorithm in which distance between cells is increased or decreased by weighting function of slope is suggested. The proposed methodology is verified by various simulations on the randomly generated DEM and obstacle map.

  • PDF