• Title/Summary/Keyword: slope stability assessment

Search Result 92, Processing Time 0.023 seconds

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.

Assessment of Blast-induced Vibration Using Dynamic Distinct Element Analysis (불연속체 동해석 기법을 이용한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seokwon;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon;Jung, Du-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1389-1397
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced nitration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been increased recently in order to analyze the effect of the blast-Induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure corves estimated tv theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a dynamic distinct element analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast. Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced nitration and the stability of rock slope.

A Case Study on Collapsed Geosynthetic Reinforced Segmental Retaining Wall (블록식 보강토옹벽의 붕괴사례 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Kyeong-Mo;Lee, Bong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2006-2012
    • /
    • 2013
  • This case study deal with the investigation of various causes and analyses concerning the cases of the collapse of reinforced segmental retaining walls installed for newly constructing a peripheral road within the campus of ${\bigcirc}{\bigcirc}$ University located in Gyeonggi-do. As results of stability analyses and reviewing of design documents concerning collapsed reinforced segmental retaining walls, such a collapse appeared because of problems related to construction including poor-compacted backfill, the omission of the investigation on the bearing capacity, the length and space in the installation of reinforced materials, and drainage systems. Also, problems during diverse types of designing were confirmed involving the stability analysis of the entire slope stability to be considered during designing and failure in application of the proposed methods of FHWA or NCMA which are generally used for two-tier reinforced segmental retaining walls. In addition, based on these details of the stability assessment, the study proposed reinforcement solutions and construction methods for stabilizing reinforced segmental retaining walls to be reconstructed in the future.

A GIS Technique to Evaluate Landslide Activity (산사태 활동성분석을 위한 GIS 응용연구)

  • 김윤종;유일현;김원영;이사로;신은선;송무영
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.83-92
    • /
    • 1996
  • The inventory maps of landslide deposits show where landsliding has occured in the past., and serve as a general guide to slope stability. Isopleth maps derived from those inventory maps, provide an economi¬cal means for the recognition of landslide activity and assessing the degree of landslide hazard in a large area, es¬pecially rural areas. GIS could generalize the methods of hazard assessment by means of isopleth mapping of landslide deposits. Isopleth maps of Secheon and Boreong areas, where the degree of landslide hazard is very high, show the mitigation of landslide activities remarkably by the remedial efforts during the period of 1978-1991.

  • PDF

Assessment of a Slope Stability of Unsaturated Soils (불포화 자연사면의 안정성 평가)

  • Ryu, Chi-Hyob;Kim, Sang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.773-778
    • /
    • 2002
  • 강우시 불포화 자연사면의 파괴메커니즘을 규명하기 위하여 사면내 모관흡수력의 변화를 고려한 안정해석을 수행하였다. 사면에는 강우계, Tensiometer, Pizometer, Water mock, 경사계 등이 설치되었으며 강우시 사면내 부간극수압과 임시지하수위의 거동을 관찰하였다. 실내실험으로부터 불포화 사면의 안정해석을 위하여 입력 값으로 사용되는 불포화투수계수, 불포화강도정수를 시료의 No.200체 통과량과 건조밀도를 기준으로 경험계수를 이용하여 추정 사용하였다. 강우의 침투로 인한 사면내 부간극수압의 분포는 계측값과 수치해석결과가 차이를 보였으며 이는 불포화 흐름시 흙속의 공기의 영향, 강우의 나무와 수풀에 의한 중간차단효과 및 증발의 영향을 해석에 고려하지 못했기 때문으로 사료된다. 사면안정해석결과 강우초기 모관흡수력을 고려하는 경우 약 10%의 안전율의 증가를 나타냈으며, 침투가 진행되면서 그 차이는 좁아져 임시지하수위가 표층까지 도달했을 때 흡수력을 고려하지 않는 해석과 안전율은 일치하였다.

  • PDF

Assesment on the Characteristics of Foundation Bearing Capacity in Reinforced Soil Wall Structure of Large Scale (대규모 보강토옹벽 구조물에서의 기초지반 지지력특성 평가)

  • Han, Jung-Geun;Yoo, Seung-Kyung;Cho, Sam-Deuk;Lee, Kyang-Woo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • The reinforced soil retaining wall structures of serious types with environmental are widely expanding more and more in Korea, which divided conventional type's reinforced soil retaining wall on segmental retaining wall. The causes of most crack occurred at block in reinforced soil retaining wall structure caused by the differential settlement of foundation. It is difference of settlement for significant factor that with overall slope stability. In this study, design assessment of foundation bearing capacity related to differential settlement of foundation ground was considered. And, also, through case study, the countermeasure methods and its application were suggested that the bearing capacity of foundation had to stabilize. The foundation ground in charge of bearing capacity should be affected by the resisting force of sliding, because the foundation parts of reinforced soil retaining wall were belongs to potential slope sliding area in overall stabilizing including retaining wall structures. Therefore, the analyzing or the designing of bearing capacity for foundation should be considered control capacity on the overall slope sliding.

  • PDF

Development of Dynamic Cone Penetration Tester Module for Slope Vulnerability Assessment and Correlation of Its Results with Standard Penetration Test Values (비탈면 취약도 평가를 위한 동적콘관입시험기 모듈개발과 표준관입시험값과의 상관관계 연구)

  • Chae, Hwi-Young;Kwon, Soon-dal
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.541-547
    • /
    • 2021
  • To assess the stability of a slope and the likelihood of its loss or collapse requires information about the ground, such as the composition of the stratum and its mechanical characteristics. This information is generally gathered through standard penetration testing (SPT) and cone penetration testing. SPT is not widely used due to problems with accessing slopes, most of which are steep and without ramps. A drop cone penetrometer, a portable device that can make up for these shortcomings, can be used in a limited way in some circumstances. Therefore, we developed a portable drilling machine and a small dynamic cone penetration test module that can easily access a slope site and perform SPT. The correlation of the developed system's results with those from SPT was analyzed. Analysis of the correlation between the energy shear rate passing to the load during the different test types established that the energy shear rate is reflected in the test result. The correlation between corrected dynamic cone penetration testing and corrected SPT was Nd' = 3.13 N'.

Stability Analysis on Unsaturated Gneiss Weathered Soil Slopes Considering Wetting Path Soil-Water Characteristic Curve (습윤경로 함수특성곡선을 고려한 불포화 편마풍화토 사면의 안정해석)

  • Park, Seong-Wan;Shin, Gil Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.191-198
    • /
    • 2009
  • It has been reported in Korea that surface slope failures in weathered soil are mainly caused by downward infiltration due to rainfall. These failures are triggered by the deepening of the wetting band in soils accompanied by a decrease in matric suction induced by the water infiltration. So, a need exists that these trends of wetting path in gneiss weathered soils, which is commonly found in Korea, are assessed by phenomenological approach. In this paper, numerical analyses of unsaturated soil slope under rainfall conditions are presented based on the wetting path soil-water characteristic curve in the laboratory. As the field SWCC matches well with the wetting path of the laboratory SWCC from the literatures, it seems reasonable to adopt the laboratory wetting SWCC as an upper boundary condition in the assessment of unsaturated slope instability.

Reliability Analysis of Sloped-Coastal Structures with Sea-Level Rise (해수면 상승에 따른 경사식 해안 구조물의 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • A system of risk assessment is developed by using the reliability analysis which evaluate quantitatively both stability and performance of sloped-coastal structures according to several scenarios of sea-level rise. By using reliability functions on armor unit and run-up, the probabilities of failure can be straightforwardly calculated with respect to several design parameters such as nominal diameter of armor unit, slope of coastal structure, and freeboard height. By comparing the results before and after sea-level rise, it may be possible to exactly assess some ranges of decrease of stability and performance of sloped-coastal structure with respect to sea-level rise. Therefore, it can also be possible to make a decision which parameters should be repaired or strengthened in order to maintain the original stability and performance of sloped-coastal structures. Finally, The present results may be useful for designing some kinds of new sloped-coastal structures including the effect of sea-level rise.

Analysis of Steep Cuts and Slopes in Cemented Sand Using Fracture Mechanics (파괴역학을 이용한 경화모래로 이루어진 사면의 해석)

  • Kim, Tae-Hoon;Kang, Kwon-Soo;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.161-168
    • /
    • 2003
  • Most natural deposits of sandy soil possess some degree of cementation resulting from the deposition and precipitation of cementing agents. The presence of cementation can have a significant influence on the stiffness and volume change behavior, and the strength of soils. An important feature of deposits of cemented sandy soils is their ability to remain stable in surprisingly high and almost vertical man-made cuts as well as natural slopes. Numerous field observations and studies of failures in slopes of cemented soils have reported that application of conventional analysis techniques of slope stability is inadequate. That is not only due to the fact that the failure surface of the slope is not circular, but also the fact that the average shear stress along the failure surface is much smaller than the shear strength measured in laboratory shear experiments. This observation alerts us to the fact that a mechanism different from conventional Mohr-Coulomb shear failure takes place, which may be related to fracture processes, which in turn are governed by fracture mechanics concepts and theory. In this study, steep slopes in cemented sand were assessed using fracture mechanics concepts. The results showed that FEM coupled with fracture mechanics concepts provides an excellent alternative in the design and safety assessment of earth structures in cemented soils.