• Title/Summary/Keyword: slope related parameters

Search Result 82, Processing Time 0.02 seconds

Correlations between variables related to slope during rainfall and factor of safety and displacement by coupling analysis

  • Jeong-Yeon Yu;Jong-Won Woo;Kyung-Nam Kang;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • This study aims to establish the correlations between variables related to a slope during rainfall and factor of safety (FOS) and displacement using a coupling analysis method that is designed to consider both in rainfall conditions. With the recent development of measurement technologies, the approach of using the measurement data in the field has become easier. Particularly, they have been obtained in tests to determine the real-time safety and movement of a slope; however, a specific method has not been finalized. In addition, collected measurement data for recognizing the FOS and displacement in real-time with a specific relevance is difficult, and risks of uncertainty, such as in soil parameters and time, exist. In this study, the correlations between various slope-related variables (i.e., rainfall intensity, rainfall duration, angle of the slope, and mechanical properties including strength parameters of selected three types of soil; loamy sand, silt loam, sand) and the FOS and displacement are analyzed in order of seepage analysis, slope stability analysis and slope displacement analysis. Moreover, the methodology of coupling analysis is verified and a fundamental understanding of the factors that need to be considered in real-time observations is gained. The results show that the contributions of the abovementioned variables vary according to the soil type. Thus, the tendency of the displacement also differs by the soil type and variables but not same tendency with FOS. The friction angle and cohesion are negative while the rainfall duration and rainfall intensity are positive with the displacement. This suggests that understanding their correlations is necessary to determine the safety of a slope in real-time using displacement data. Additionally, databases considering rainfall conditions and a wide range of soil characteristics, including hydraulic and mechanical parameters, should be accumulated.

Physiologic Cervical Alignment Change between Cervical Spine X-ray and Computed Tomography

  • Lee, Ho Jin;Kim, Il Sup;Hong, Jae Taek
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.784-790
    • /
    • 2021
  • Objective : The purpose of this study was to investigate the correlations among various radiological parameters used to determine cervical alignment from cervical spine radiographs (X-CS) and cervical spine computed tomography (CT-CS), both within and between modalities. Methods : This study included 168 patients (≤60 years old) without a definite whole spine deformity who underwent CT-CS and X-CS. We measured occipital slope (O-s), C1 slope, C2 slope, C7 slope, sella turcica - C7 sagittal vertical axis (StC7-SVA), spino-cranial angle, T1 slope, and C27-SVA. We calculated the O-C2 angle, O-C7 angle, and C2-7 angle from the measured parameters and conducted correlation analyses among multiple parameters. Results : The intrinsic correlation features among multiple cervical parameters were very similar for both X-CS and CT-CS. The two SVA parameters (C27-SVA and StC7-SVA) were mainly influenced by the upper cervical slope parameters (r=|0.13-0.74|) rather than the lower slope cervical parameters (r=|0.08-0.13|). The correlation between X-CS and CT-CS for each radiological parameter was statistically significant (r=0.26-0.44) except for O-s (r=0.10) and StC7-SVA (r=0.11). Conclusion : The correlation patterns within X-CS and CT-CS were very similar in this study. The correlation between X-ray and CT was statistically significant for most radiological parameters, and the correlation score increased when the horizontal gaze was consistently maintained. The lower cervical parameters were not statistically associated with translation-related parameters (C2-7 SVA and StC7-SVA). Therefore, the upper cervical segment may be a better predictor for determining head and neck translation.

A Study on the Vehicle Dynamics and Road Slope Estimation (차량동특성 및 도로경사도 추정에 관한 연구)

  • Kim, Moon-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

A study of prosodic features of patients with idiopathic Parkinson's disease (파킨슨병 환자와 정상노인 간의 문장 읽기에 나타난 운율 특성 비교)

  • Kang, Young-Ae;Seong, Cheol-Jae;Yoon, Kyu-Chul
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.145-151
    • /
    • 2011
  • In view of the hypothesis that the effects of Parkinson's disease on voice production can be detected before pharmacological intervention, the prosodic features of patients with idiopathic Parkinson's disease (IPD) and a healthy aging group were diagnostically analyzed with the long term object of establishing, for clinical purposes, early disease-progression biomarkers. Twenty patients (male 8; female 12) with IPD (prior to pharmacological intervention) and a healthy control group of 22 (male 10; female 12) were selected. Ten sentences were recorded with a head-worn microphone. One sentence was chosen for the analysis of this paper. Relevant parameters, i.e. 3-dimensional model (F0, intensity, duration) and pitch and intensity related slopes (maxEnergy, maxF0, meanAbS, semiT, meanEnergy, meanF0), were analyzed by two-group discriminant analysis. The stepwise estimation method of discriminant analysis was performed by gender. The discriminant functions predicted 83.9% of the male test data correctly while the prediction rate was 93.1% for the female group. The results showed that meanF0_slope and semiT_slope were more important parameters than the others for the male group. For the female group, the meanEnergy_slope and maxEnergy_slope were the important ones. These findings indicate that significant parameters are different for the male and female group. Gender lifestyle may be responsible for this difference. Dysprosodic features of IPD show not simultaneously but progressively in terms of F0, intensity and duration.

  • PDF

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

Numerical Analysis on Progressive Failure of Plane Slopes (평면 사면의 점진적 파괴에 관한 수치해석)

  • 송원경;권광수
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

The Influence of Fitting Parameters on the Soil-Water Characteristics Curve in Stability Analysis of an Unsaturated Natural Slope (불포화 자연사면의 안정해석시 흙-함수특성곡선 맞춤계수의 영향)

  • Kim, Jae-Hong;Yoo, Yong-Jae;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • The influence of Soil-Water Characteristic Curve (SWCC) fitting parameters for an unsaturated natural slope was evaluated through seepage and slope stability analysis as a function of rainfall. Soil samples were collected from the study area in Jirisan National Park and the physical and mechanical characteristics of unsaturated soil layers were measured in laboratory tests. The saturation depth was calculated via seepage analysis by changing fitting parameters α, the parameter related to the Air Entry Value (AEV) and n, the parameter related to the slope of the SWCC in the range of natural conditions. Slope stability analysis using the limit equilibrium method considered the calculated depth of saturation. Results from seepage analysis for various rainfall conditions indicate the saturation depth in the soil layer suddenly increased as the fitting parameter α decreased; the saturation time for the entire soil layer also decreased. Slope stability analysis considering the calculated depth of saturation shows that the slope safety factor rapidly decreased as the fitting parameter α decreased, whereas the variation in slope safety factor was very small when n increased. Hence, fitting parameter α has a large effect on saturation depth during rainfall and therefore on slope stability, whereas slope stability is relatively unaffected by the fitting parameter n.

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Analysis of Rock Slope Stability by Using GIS in Mt. Keumsu Area (지구정보시스템을 이용한 금수산일대의 암반사면 안정성 평가)

  • 배현철
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • The goal of this study is to assess the spatial distribution of natural slopes and cutting slopes under would-be development. For this goal, a quantitative slope stability analysis method using GIS integrated with a computer program was developed. Through field investigations, the discontinuity parameters were collected such as orientation of discontinuity, persistence, spacing, JRC, JCS, and water depth. The distributions were interpolated from the ordinary kriging method in ARC/INFO GIS after variogram analysis. The layers showing all parameters needed for limit equilibrium analysis were constructed. The final layer using GIS works composed of 162,352 polygons, that is, unit slopes. The rock slope stability analysis program was coded by C++ language. This program can calculate geometrical vectors related to rock block failures using input orientation data and direction and dimension of strength to occur failure. Also, this can calculate shear strength of joints through empirical equations and quantitative factors of safety. This methodology was applied to the study area which is located in Jaecheon city and Danyang-gun of the northeastern Keumsu is about 135$km^2$. As a result, the study area was entirely stable but unstable, that is, factor of safety less than 1.0dominantly at the slopes near Keumsil, Daejangri, Keumsungmyun and Sojugol, Mt. Dongsan, Juksongmyun by the natural slope stability analysis. Assuming the cutting slope showing the same direction immediate, and quantitative analysis of factors of safety for a regional area could be conducted through GIS integrated with a computer program of limit equilibrium.

  • PDF

Estimation of spatial parameters to be included in 3D mapping for long-term forest road management

  • Choi, Sung-Min;Kweon, Hyeongkeun;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.727-742
    • /
    • 2020
  • Point cloud-based 3D maps can obtain many kinds of information for maintenance work on forest road networks. This study was conducted to compare the importance of each factor to select the factors required for the mapping of 3D forest road maps. This can be used as basic data for attribute information required to maintain forest road networks. The results of this study found that out of a total of 30 indexes extracted for mapping 3D forest roads, a total of 21 indexes related to stakeholder groups were significantly different. The importance of the index required by the civil service group was significantly higher than that of the other groups overall. In the case of the academic group, the index importance for cut slope, fill slope, and drainage facility was significantly higher. On the other hand, the index importance for the forestry cooperative and forest professional engineer group was mostly distributed between the civil servants' group and the academic group. In particular, the type of drainage system showed the highest value among the detailed indexes. Overall, drainage related factors in this survey had high coefficient values. The impact of water on forest roads was the most important part in road maintenance. In addition, the soil texture had a high value in relation to slope stability. This is thought to be because the texture of the soil affects the stability of the slope.