• 제목/요약/키워드: slope monitoring

검색결과 388건 처리시간 0.74초

An Accuracy Assessment of the Terrestrial LiDAR for Landslide Monitoring (산사태 모니터링을 위한 지상라이다 자료의 정확도 평가)

  • Park, Jae-Kook;Lee, Sang-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제26권2호
    • /
    • pp.117-127
    • /
    • 2008
  • Korea has a large number of landslides due to localized torrential downpours and typhoons in summer, causing great human damage and economic losses. In particular, most roads in the Gangwon area are located in mountains, making them expose to a great risk of landslide. Therefore, it is urgent to prepare countermeasures to prevent these landslides. Necessary for that are various slope investigation and high-tech observation techniques for slope maintenance. Recently there have been slope observation techniques using optical fiber sensors, GPS, CCD cameras, Total Station and satellite images; however, these are not used much due to poor economic feasibility, low accuracy and efficiency. This study evaluated accuracy of displacement extraction of model slopes using terrestrial LiDAR to determine its application to landslide monitoring. As a result, it can measure several mm of minute displacement with high accuracy and help to rapidly obtain geographical features of slope.

Case Study on the Use of CCTV for Realtime Monitoring and Recommended Improvements (상시계측시스템 모니터링을 위한 CCTV 활용사례 및 개선방안 연구)

  • Bae, Sang-Woo;Lee, Jong-Hyun;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • 제22권4호
    • /
    • pp.417-425
    • /
    • 2012
  • CCTV cameras are used for surveillance and purposes of security, and can also be applied for monitoring infrastructure and equipment. In the Cut Slope Management System managed by KICT (Korea Institute of Construction Technology), cut slopes are continuously monitored using a real-time system, with CCTV cameras installed at 119 sites to detect slope activity. Here we compare CCTV images with displacement at three sites and perform a quantitative analysis. Methods for improving CCTV camera management and systems are also discussed with regard to communication, obstacles, and nighttime management.

Developing slope hazard map system with mobile PPT (모바일 PPT를 이용한 사면 붕괴 위험도 산출 시스템 구축)

  • Yang, Seung-Tae;Seong, Eun-Yeong;Kang, Young-Shin;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.367-370
    • /
    • 2007
  • Recently, With explosive national land developments construction fields ate increasing, and slope failures are disastrous when they occur in mountainous area adjoining highways. but public institutions and supervisors, to manage slope need GIS for managing it more quickly and correctly. For manage slope, it is nesessary to use new IT, especially wireless internet. The current domestic population using cell phones exceeded 30 million and the domestic wireless Internet environment has matured, but implementation of mobile technology for government services isnot matured enough. In this paper the author proposed a new system of mobile PPT monitoring for managing slope inspection for Ubiquitous Environment. This new system manages data in real time and reduces human power when applied to current working environments. This research was supported by a grant(NEMA-06-NH-05) from the Natural Hazard Mitigation Research Group, National Emergency Management Agency.

  • PDF

Real-time unsaturated slope reliability assessment considering variations in monitored matric suction

  • Choi, Jung Chan;Lee, Seung Rae;Kim, Yunki;Song, Young Hoon
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.263-274
    • /
    • 2011
  • A reliability-based slope stability assessment method considering fluctuations in the monitored matric suction was proposed for real-time identification of slope risk. The assessment model was based on the limit equilibrium model for infinite slope failure. The first-order reliability method (FORM) was adopted to calculate the probability of slope failure, and results of the model were compared with Monte-Carlo Simulation (MCS) results to validate the accuracy and efficiency of the model. The analysis shows that a model based on Advanced First-Order Reliability Method (AFORM) generates results that are in relatively good agreement with those of the MCS, using a relatively small number of function calls. The contribution of random variables to the slope reliability index was also examined using sensitivity analysis. The results of sensitivity analysis indicate that the effective cohesion c' is a significant variable at low values of mean matric suction, whereas matric suction ($u_a-u_w$) is the most influential factor at high mean suction values. Finally, the reliability indices of an unsaturated model soil slope, which was monitored by a wireless matric suction measurement system, were illustrated as 2D images using the suggested probabilistic model.

[Retracted]Analysis of Slope Safety by Tension Wire Data ([논문철회]지표변위계를 활용한 비탈면 안정성 예측)

  • Lee, Seokyoung;Jang, Seoyong;Kim, Taesoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • 제16권4호
    • /
    • pp.5-12
    • /
    • 2015
  • Civil engineers have taken the numerous slope monitoring data for an engineering project subjected to hazard potential of slide. However, the topics on how to deal with and draw out proper information from the data related to the slope behavior have not been widely discussed. Recently, several researchers had installed the real-time monitoring system to cope with slope failure; however they are mainly focused on the hardware system installation. Therefore, this study tries to show how the measured data could be grouped and connected each other. The basic idea of analyzing method studied in this paper came from the clustering, which is the part of data mining analysis. Therefore, at the base of classification of time series data, the authors suggest three mathematical data analyzing methods; Average Index of different displacement ($AD_{i,j}$), Difference of average relative displacement ($\overline{RD}_{i,j}$) and Coordinate system of average and relative displacement ($\overline{RD}$, AD). These analyzing methods are based on the statistical method and failure mechanism of slope. Therefore they showed clustering relationships of the similar parts of the slope which makes the same sliding mechanism.

Monitoring the Hydrologic Water Quality Characteristics of Discharge from a Flat Upland Field (평지 전작 유출수의 수문·수질 특성 모니터링)

  • Park, Chanwoo;Oh, Chansung;Choi, Soon-Kun;Na, Chae-in;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제62권3호
    • /
    • pp.109-121
    • /
    • 2020
  • Converting the agricultural land-use of rice field to upland has been increasingly conducted as farmers encourages themselves to grow higher value-added crops on rice fields under the policy support. Comparing to rice field, Upland shows different characteristic of discharge due to the slope, scale, and shape of field and characteristics of rainfall event. In this study, we designed the experiment fields reflecting flat-upland characteristics with different land scale, and tried to collect the discharge and load data. Soybeans and corn were selected as target crops considering the possibility of large-scale cultivation and crop demand. The cultivation was conducted during the growth period in 2019 with 3 different field scales. Hence, we have collected the discharge data from 17 rainfall events and the load data for 8 rainfall events. As a result, the magnitude of rainfall events and the discharge duration were found to have a strong positive correlation and field discharge occurred during the period by 55% to 83% of rainfall duration. Besides we found other relationships and characteristics of rainfall event, discharge, and pollutant load and also pointed out that continuous monitoring and more data are required to derive statistically significant results. Compared with slope-field monitoring data obtained from the precedent research, the runoff ratio of the flat-fields was significantly lower than slope-fields. Overall the discharge in the slop and flat-fields shows appreciably different characteristics so that the related researches need to be further conducted to reasonably assess environmental impact of agricultural activities at flat-field.

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

Slope Behavior Analysis Using the Measurement of GFRP Underground Displacement (GFRP 록볼트 계측을 통한 사면 거동 분석)

  • Jin, Ji-Huan;Lim, Hyun-Taek;Bibek, Tamang;Chang, Suk-Hyun;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • 제17권4호
    • /
    • pp.11-19
    • /
    • 2018
  • Although many researches related to monitoring and automatic measuring devices for early warning system during slope failure have been carried out in Korea and aboard, most of the researches have installed measuring devices on the slope surface, and there are only few researches about warning systems that can detect and warn before slope failure and disaster occurs. In this study, slope failure simulation experiment was performed by attaching sensors to rock bolts, and initial slope behavior characteristics during slope failure were analyzed. Also, the experiment results were compared and reviewed with varied slope conditions, i.e. shotcrete slope and natural slope, and varied material conditions, i.e. GFRP and steel rock bolt. This study can be used as a basic data in development of warning and alarm system for early evacuation through early detection and warning before slope failure occurs in steep slopes and slope failure vulnerable areas.