• Title/Summary/Keyword: slope disaster

Search Result 359, Processing Time 0.022 seconds

Categorize Debris Flow Hazard Zones in Urban Areas: The Case of Seoul (도시지역 토사재해 위험지역의 유형화: 서울시를 사례로)

  • Park, Changyeol;Shin, Sang Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.915-926
    • /
    • 2016
  • The purpose of this study is to classify debris flow hazard zones in urbanized areas using multivariate statistical analyses and to suggest customized management strategies to each areal type. Using field survey data set in Seoul, 49 sample debris hazard zones are selected. Clustering and discriminant analyses show that debris flow hazard zones are classified into two types. Surrounding land use and land slope are major factors influencing to the categorization. The results suggest that, by considering the characteristics of each areal type, more customized management strategies for debris flow hazard are necessary. Particularly, in addition to traditional structural measures, non-structural measures including land use and development control for downstream built-up areas should be emphasized in urbanized areas to mitigate human and property damages from debris flow hazard more fundamentally.

Revegetation and human( I ) -Revegetation of face of the slopes in the future- (녹화(綠化)와 인간(人間)( I ) -앞으로의 비탈면 녹화(綠化)-)

  • Chun, Kun-Woo;Kim, Min-Sik;Iwamoto, Tohru;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.74-87
    • /
    • 2001
  • When the revegetation of the slopes is required, it is more desirable to consider it from the ecological view point rather than from the disaster-preventive one because the environment is critical for the introduction of pioneer plants to the denuded slopes. The ecological point of view adheres to the maintenance of the present, original ecosystem of the construction area. The new revegetation technology is presented using native microorganisms and its effective usuage was discussed based on the data in the research field. Direct seeding is recommended and explained in detail than planting seedlings. The importance of inclination angle of slope face is shown for the successful revegetation from its relationship with the thickness of soil. It is indicated that the introduction of pilot plants to the slopes should include their ability to ease the acid rain effects as much as possible. Finally every construction may not be desirable for the maintenance and improvement of the global ecosystem without the consideration of the opinions mentioned above.

  • PDF

Case Studies on Determination of Strength Parameters for the Analysis of Rock Slope Stability (암반사면 안정 해석을 위한 강도정수 산정 사례연구)

  • Kim, Hak Joon;Jeong, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The estimation of strength parameters is very important for the stability analysis of rock slopes. Various methods for the determination of strength parameters were suggested by various researchers. The number of methods used for the estimation of strength parameters in the stability analysis of rock slopes were investigated based on literature reviews. The frequency of the method determining strength parameters were investigated with respect to failure types. The cohesion and friction angles of the rock and discontinuities are presented with RMR values. The cohesion shows wider range of values relative to those of friction angles according to current studies. Even though RMR does not show any correlation with cohesion values, RMR and the friction angle of the rock clearly shows a positive relationship. Proper methods should be utilized for the determination of strength parameters with consideration for failure types and be proved through literature reviews. The credibility of determining strength parameters is expected to improve if strength parameters data are accumulated from the back analysis performed for failed local rock slopes.

The effect of a risk factor on quantitative risk assessment in railway tunnel (철도터널에서 위험인자가 정량적 위험도 평가에 미치는 영향)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • Quantitative risk assessment (QRA) of railway is to create a variety of scenario and to quantify the degree of risk by a result of the product of accident frequency and accident. Quantitative risk Assessment is affected by various factors such as tunnel specifications, characteristics of the fire, and relation of smoke control and evacuation direction. So in this study, it is conducted that how the way of smoke control and the relation of smoke control and evacuation direction affect quantitative risk assessment with variables (the tunnel length (2, 3, 4, 5, 6 km) and the slope (5, 15, 25‰)). As the result, in a train fire at the double track tunnel (Area = $97m^2$), it is most efficient to evacuate to the opposite direction of smoke control regardless of the location of train in train fire. In addition, under the same condition, index risk in mechanical ventilation up to 1/10.

An Analysis of the Flow and Bed Topography Characteristics of Curved Channels with Numerical Model (수치모형에 의한 만곡수로의 흐름 및 하상 특성 분석)

  • Jeong, Jae-Uk;Han, Jeong-Seok;Yun, Se-Ui
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.111-121
    • /
    • 2000
  • A numerical model which can analyze the flow and bed topography characteristics of a single bend and continuous one was suggested using the equations of mass, momentum, the vertical distribution of secondary flow, and the transverse bed slope. The calculated flow and bed topography characteristic values were compared with the experimental data in a single bend, and the predicted path of maximum streamwise velocity in continuous bends also compared with the Vadnal and Chang's data. The comparisons gave good results. A curved channel with 180 degrees was used. Sand and anthracite were selected as bed materials in the movable bed experiments. The model application of this model to the sand bed and the anthracite one accorded well with the observed values in the experiments. This model was proved to be useful for predicting the flow and bed topography with the change of bed materials. The results of this research could be used to construct and control curved channels as a fundamental information.mation.

  • PDF

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

An experimental study on tailings deposition characteristics and variation of tailings dam saturation line

  • Wang, Guangjin;Tian, Sen;Hu, Bin;Kong, Xiangyun;Chen, Jie
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • This study adopted soil test and laboratory physical model experiments to simulate the tailings impoundment accumulation process according to the principle of similarity. Relying on the practical engineering, it analyzed the tailings deposition characteristics on dry beach surface during the damming process, as well as the variation rules of dam saturation line. Results suggested that, the tailings particles gradually became finer along the dry beach surface to inside the impoundment. The particle size suddenly changed at the junction between the deposited beach and the water surface, which displayed an obvious coarsening phenomenon. Besides, the deposited beach exhibited the vertical feature of coarse upward and fine downward on the whole. Additionally, in the physical model, the saturation line elevated with the increase in dam height, and its amplitude was relatively obvious within the range of 1.0-4.5 m away from the initial dam. Under flood condition, the saturation line height was higher than that under normal condition on the whole, with the maximum height difference of 4 cm. This study could provide an important theoretical basis for further studies on dam failure experiments and the evolution rules of leaked tailings flow.

Analysis of Change Process in the Design Conditions of Harbor Breakwaters in Korea (우리나라 항만 방파제 설계조건의 변화과정 분석)

  • Hong, Keun;Kang, Yoon-Koo;Kim, Hong-Jin;Yoon, Han-Sam;Ryu, Cheong-Ro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • We studied the change process in the design parameters (conditions) of structural sections of vertical/slope breakwaters in Korea over the long term based on an analytical review of the latest design recommendations. This study found the following. 1) Design wave heights have increased gradually with the increase in the wave height of deep sea waves. 2) The relative design wave height ($H_{1/3}/h$) changed from 0.5 in the 1970s to 0.6~0.7 today. This means that design wave heights are overestimated compared with the water depth. 3) Before 1999, the design water level was based on high water during an average spring tide, but this has been increased since 2000 because of additional consideration of anomalous sea levels. 4) Before 1999, the relative crest heights of the investigated breakwaters was 0.6~0.7, but after 1999 this increased to a mean of 1.0 and maximum of 1.26.

An Analytical Study on the Embedded Depth of Concrete Poles in Inclined ground (경사지에서 콘크리트 전주의 근입깊이에 대한 해석적 연구)

  • Yoon, Ki-Yong;Kim, Eung-Seok;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1164-1169
    • /
    • 2014
  • Overturning of concrete poles are occurred annually due to natural disaster such as a typhoon. The present code for the resisting moment and the safety on overturning of concrete poles in inclined ground is inadequate. In this study, the concept of the code for those in flat ground is applied to calculate the resisting moment in inclined ground using general analysis program L-Pile Plus13.8. According to the analytical results, the resisting moment in inclined ground is rapidly decrease as increasing the slope angle although the embedded depth are added by the additional embedded depth on the code. It is revealed that the capacity in inclined ground is equivalent to that in flat ground if additional embedded depth is increased from 1.5 to 3 times.

A Study on Urban Flood Vulnerability Assessment Considering Social Impact (사회적 평가 지표를 반영한 도시 홍수취약성 평가)

  • Lee, Gyu Min;Choi, Jin Won;Jun, Kyung Soo
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 2020
  • This study aims to establish an approach to assess urban flood vulnerability by identifying social characteristics such as the road transportation and the vulnerable groups. Assessment procedures comprise three steps as: (1) composing the assessment criteria to reflect the urban characteristics; (2) calculating the weight; and (3) evaluating the vulnerability. The criteria were adopted by Delphi survey technique. Four criteria as land cover, residents, vulnerable areas, and disaster response were adopted in the current study. To determine the weight set of criteria, subjective and objective methods were combined. The weight set was determined using the combined method which reflects the Delphi method and Entropy analysis. In the process of data-based construction, GIS tools wwere used to extract administrative unit materials such as land cover, road status, and slope. Data on population and other social criteria were collected through the National Statistical Office and the Seoul Metropolitan statistical data. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) technique, which uses materials from cell units in order to rank the closest distance to the best case and the farthest distance from the worst case by calculating the distances to the area of assessment, was applied to assess. The study area was the Dorimcheon basin, a flood special treatment area of Seoul city. The results from the current study indicates that the established urban flood vulnerability assessment approach is able to predict the inherent vulnerable factors in urban regions and to propose the area of priority control.