• 제목/요약/키워드: slope countermeasure

Search Result 62, Processing Time 0.016 seconds

Analysis on Trail Deterioration in Wolseong, Gyeongju-si - Focused on Assessing Impact Rating Class - (경주 월성의 산책로 훼손실태 분석 - 환경피해도 평가를 중심으로 -)

  • Kang, Tai-Ho;You, Ju-Han;Zhao, Hong-Xia;Li, Hong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.33-39
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the conservation and restoration trail about Wolseong by objective and systematical trail deterioration in Wolseong as UNESCO, world heritage site, Gyeongju-si, Korea. To accomplish the purpose, not only trail condition such as altitude, entire width, bare width, maximum depth and slope of trail, but also deterioration types of trail were surveyed at the total 97 points for 2.145km in length on the 11 access trails to Wolseong. Major deterioration types of trail were root exposure(48%), rock exposure(40%), trail deeping(9%) in order of frequency. To grasp the deterioration condition of the trail, assessment on impact rating class of trail that the 11 access trail were investigated. Putting these results together informs us that the deterioration condition of the trail in Wolseong is reached the level of grave concern yet, prompt countermeasure to maintain the existing condition has to be considered with regard for the conditions of location and the containing amounts of use.

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF