• Title/Summary/Keyword: slope and aspect

Search Result 353, Processing Time 0.025 seconds

Wind direction field under the influence of topography: part II: CFD investigations

  • Li, S.W.;Hu, Z.Z.;Tse, K.T.;Weerasuriya, A.U.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.477-501
    • /
    • 2016
  • Though hilly topography influences both wind speeds and directions aloft, only the influence on wind speeds, i.e. the speed-up effect, has been thoroughly investigated. Due to the importance of a model showing the spatial variations of wind directions above hilly terrains, it is worthwhile to systematically assess the applicability and limitations of the model describing the influence of hilly topographies on wind directions. Based on wind-tunnel test results, a model, which describes the horizontal and vertical variations of the wind directions separately, has been proposed in a companion paper. CFD (Computational Fluid Dynamics) techniques were employed in the present paper to evaluate the applicability of the proposed model. From the investigation, it has been found that the model is acceptable for describing the vertical variation of wind directions by a shallow hill whose primary-to-secondary axis ratio (aspect ratio) is larger than 1. When the overall hill slope exceeds $20^{\circ}$, the proposed model should be used with caution. When the aspect ratio is less than 1, the proposed model is less accurate in predicting the spatial variation of wind directions in the wake zone in a separated flow. In addition, it has been found that local slope of a hill has significant impact on the applicability of the proposed model. Specifically, the proposed model is only applicable when local slope of a hill varies gradually from 0 (at the hill foot) to the maximum value (at the mid-slope point) and then to 0 (at the hill top).

Biomass and Annual Net Production of Quercus Mongolica Stands in Pyungchang and Jecheon Areas (평창 및 제천 지역 신갈나무림의 바이오매스와 연간 순생산량)

  • Lee, Don Koo;Kwon, Ki-Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.309-315
    • /
    • 2006
  • This study was to compare the biomass and annual net production between 60 to 70-year-old Quercus mongolica stand facing northern and southern aspect in Mt. Joongwang (1000 m from sea level), Pyungchang and 35-year-old Q. mongolica stand in Mt. Wolak (300m from sea level), Jechon. The total biomass was 252.9 ton/ha in northern aspect and 212.2 ton/ha in southern aspect of Mt. Joongwang while 198.7 ton/ha in northern aspect of Mt. Wolak. Annual net production was 17.3 ton/ha/yr in northern aspect and 14.2 ton/ha/yr in southern aspect of Mt. Joongwang while 21.2 ton/halyr in Mt. Wolak. Total biomass, especially leaf and branch biomass in north slope was greater than those in south slope of Mt. Joongwang. Leaf area index (LAI) of Q. mongolica stand was 11.17 in Mt. Wolak while 5.77 in northern aspect and 3.97 in southern aspect of Mt. Joongwang, and the net assimilation rate (NAR) was 2.60 kg/kg/yr, 4.26 kg/kg/yr, 6.06 kg/kg/yr in same order.

Growth Properties and Characteristics of Water Relation Parameters for a Forest of Quercus variabilis by Enviromental Factors (중부지방 굴참나무림의 입지환경에 따른 생장 및 수분생리 특성에 관한 연구)

  • 정동준;신만용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.233-237
    • /
    • 2003
  • This study was conducted to provide a rational forest management method for a natural oak (Quercus variavilis) forest stand in the central part of South Korea based on characteristics of growth and water relation parameters. Average volume per hectare was 175.1 ㎥ in the study site of oak stands. Basal area and volume of each direction appeared to increase as the slope direction moves from north to south, but annual mean increment and periodic annual increment of DBH for 10 years showed the lowest value at the southern aspect. Maximum water potentials measured between 12 and 14 o'clock were analyzed by direction and elevation in the oak stands. Water potential of oak decreased as the slope changed from the north to the south aspect and water potential increased at lower elevations. Soil water content for the oak stands tended to decrease as the aspect shifted from north to south. Water potential and soil moisture content were highly correlated. It appears that oaks have a higher moisture requirement at the southern aspect, because of stand density related to intraspecific competition.

Characteristics Analysis of Debris Flow Disaster in Korean National Parks (국립공원 지역에 있어서 토석류 재해의 특성 분석)

  • Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.52-64
    • /
    • 2010
  • This study was carried out to analyze the occurrence characteristics and the influence of forest environment factors on the debris flow of 3 national parks in korea. The results obtained from this study were summarized as follows; The total number of debris flow occurrence was 125 areas. The average length of the debris flow scar was 144m, average width was 20m. And the average area and sediment were $2,854m^2$ and $3,959m^3$ respectively. The factors influencing the debris flow were highly occurred in Metamorphic rock, mixed forest type. And also, slope gradient was $30{\sim}35^{\circ}$, aspect was NE, altitude was over 1,000m, vertical and cross slope was concave (凹), soil depth was below 15cm, stream order was 0 order. The variables of cross slope (complex), deciduous tree, soil depth (over 46cm), cross slope (concave), mixed forest type and altitude (801~1200m) in correlation analysis were significant at 1 % level. The landslide of high mountain area highly tend to change the debris flow in stream bed of torrent. The debris flow in national parks mainly occurred in high mountain area with long ridge and steep slope.

Estimation of Infiltration and Simulation of Seepage Behavior in Slope using the Rainfall Data in Seoul (서울지역 강우자료를 이용한 침투량 산정과 사면에서의 침투거동 모의)

  • Lee, Il-Ju;Oh, Tae-Suk;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.103-109
    • /
    • 2008
  • Precipitation on slope is separated into infiltration and outflow according to physical properties of soil and slope. However, the slope analysis is assumed that all precipitation are percolated. So, groundwater level is excessive tend to be calculated. In this paper, NRCS model and Horton models that have a suitability were used for agro-type analysis of Seoul station after precipitation was separated into infiltration and outflow. Also, gradient of slope was analyzed about seepage behavior and underground water level aspect through numerical analysis. After inclination correction, the estimated infiltration was compose of slopes much applied by domestic design standard. The change of groundwater level is appeared greatly as agro-type goes from D type to A type in the analysis results.

An Estimation of Landslide's Vulnerability by Analysis of Static Natural Environmental Factors with GIS (GIS를 이용한 정적 자연환경인자의 분석에 의한 산사태 취약성 평가)

  • Yang, In-Tae
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.61-72
    • /
    • 2005
  • The landslide risk assessment process consists of hazard risk assessment and vulnerability analysis. landslide hazard risk is location dependent. Therefore, maps and spatial technologies such as GIS are very important components of the risk assessment process. This paper discusses the advantages of using GIS technology in the risk assessment process and illustrates the benefits through case studies of live projects undertaken. The goal of this study is to generate a map of landslide vulnerability map by analysis of static natural factors with GIS. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight values for landslide potentialities are calculated from AHP method. Slope and slope-direction are extracted from DEM, and soil informations are extracted from digital soil map. Also, vegetation informations are extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is verified with landslide place.

  • PDF

The Application of GIS and AHP for Landslide Vulnerable Estimation (산사태 취약성 평가를 위한 GIS와 AHP법의 적용)

  • Yang, In-Tae;Chun, Ki-Sun;Lee, Sang-Yoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.47-54
    • /
    • 2005
  • The goal of this study is to generate a landslide potential map using GIS(Geographic Information System) based method. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM(Digital Elevation Model) and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight value for landslide potentialities is calculated from AHP(Analytic Hierarchy Process) method. Slope and Slope-direction is extracted from DEM, and soil information is extracted from digital soil map. Also, vegetation information is extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is compared with landslide place.

  • PDF

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Influence on forest fire spread & intensity on fuel type of burnt area. (산불피해지역 연료형태가 산불연소에 미치는 영향)

  • Lee, Si-Young;Lee, Myung-Woog;Yeom, Chan-Ho;Kwon, Chun-Geun;Park, Houng-Sek;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • Forest fire danger rate of thinning area was lower than that of non thinning area, because height rate of leewardside in burned stem of tree, damage rate of crown and mortality of tree in thinning area were 30.8%, 37% and 48.4% lower than that in non-thinning area, respectively. Intensity of forest fire varied depending upon topographical condition up slope, down slope, aspect, location as well as species, breast height diameter and forest tree density. Especially, a mountaintop area was burned down when forest fire was spread to up slope ridge of mountain.

  • PDF

Rock Slope Failure Analysis and Landslide Risk Map by Using GIS (GIS를 이용한 암반사면 파괴분석과 산사태 위험도)

  • Kwon, Hye-Jin;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.15-25
    • /
    • 2014
  • In this study, types of rock slope failure are analyzed by considering both joint characteristics investigated on previous landslide regions located at northern part of Mt. Jiri and geographic features of natural slopes deduced from GIS. The landslide prediction map was produced by superposing the frequency ratio layers for the six geographic features including elevation, slope aspect, slope angle, shaded relief, curvature and stream distance, and then the landslide risk map was deduced by combination of the prediction map and the damage map obtained by taking account of humanity factors such as roads and buildings in the study area. According to analysis on geographic features for previous landslide regions, the landslides occurred as following rate: 88% at 330~710 m in elevation, 77.7% at $90{\sim}270^{\circ}$ in slope aspect, 93.9% at $10{\sim}40^{\circ}$ in slope angle, 82.78% at grade3~7 in shaded relief, 86.28% at -5~+5 in curvature, and 82.92% within 400m in stream distance. Approximately 75% of the landslide regions belongs to the region of 'high' or 'very high' grade in the prediction map, and 13.27% of the study area is exposed to 'high risk' of landslide.