• Title/Summary/Keyword: slope

Search Result 8,650, Processing Time 0.044 seconds

A Study on Drainage Facilities in Mountainous Urban Neighborhood Parks - The Cases of Baebongsan Park and Ogeum Park in Seoul - (산지형 도시근린공원의 배수시설 특성 - 서울시 배봉산공원과 오금공원을 사례로 -)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.80-92
    • /
    • 2010
  • The purpose of this study was to analyze drainage facilities in mountainous urban neigbborhood parks--Baebongsan Park and Ogeum Park--in Seoul. Based on an analysis of existing drainage facilities, the volume of storm water runoff (VSW), the runoff rate of open channels(ROC), and the detention capacity of open charmels(DCOC) by each drainage watershed, the coefficient of runoff rate(CROC) as evaluated to be relevant between VSW and ROC and the coefficient of the detention capacity of open channe1s(CDCOC) as evaluated with DCOC compared to VSW were estimated and analyzed by parks and by watersheds. The results are as follows: 1. The total drainage area of Baebongsan Park was 34.13ha including surface runoff area(15.05ha; 44.09%), open channel area(l4.60ha; 42.78%), and natural waterway area(4.48ha; 13.13%). The total drainage area of Ogeum Park was 20.39ha including open channel area (10.14ha; 49.73%), ridge-side gutter area(7.17ha; 35.16%), surface runoff area (2.52ha; 12.36%), and natural waterway area (0.56ha; 2.75%). In Baebongsan Park, the portion of surface runoff was comparatively higher while the portion of artificial drainage area was higber in Ogeum Park. 2. In Baebongsan Park drainage districts were largely divided: VSW was $7.28m^3/s$ in total(average $0.23m^3/s$). Comparatively, tbe VSW in Ogeum Park, including smaller drainage districts, was $4.37m^3/s$ in total(average $0.12m^3/s$). 3. The ROC of Baebmgsan Park was $11.58m^3/s$ in total(average $0.77m^3/s$) and the CROC was 5.26, while in Ogeum Park, the ROC was $15.40m^3/s$(average $0.34m^3/s$) and tbe CROC was 8.87 higher than that of Baebongsan Because the size and slope of the open channel in Baebongsan Park was higher, the average ROC was larger, while tbe CROC of Ogeum Park was higher than that of Baebongsan Park, for the VSW in Ogeum Park was comparatively lower. 4. The DCOC in Baebongsan Park was $554.54m^3$ and the average of CDCOC was 179.83. That of Ogeum Park was $717.74m^3$ and the average of the CDCOC was 339.69, meaning that the DCOC of Ogeum Park was so much higber that drainage facilities in Ogeum Park were built intensively. This study was focused m the capacity of the drainage facilities in mountainous urban neighborhood parks by using the CROC to evaluate relevance between VSW and ROC and the CDCOC to evaluate the DCOC as compared with VSW. The devised methodology and coefficient for evaluating drainage facilities in mountainous urban neighborhood parks may he universally applicable through additional study. Further study m sustainable urban drainage systems for retaining rainwater in a reservoir and for enhancing ecological value is required in the near future.

Soil Surface Fixation by Direct Sowing of Zoysia japonica with Soil Improvement on the Dredged Soil Slope (해저준설토 사면에서 개량제 처리에 의한 한국들잔디 직파 지표고정 공법에 관한 연구)

  • Jeong, Yong-Ho;Lee, Im-Kyun;Seo, Kyung-Won;Lim, Joo-Hoon;Kim, Jung-Ho;Shin, Moon-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to compare the growth of Zoysia japonica depending on different soil treatments in Saemangeum sea dike, which is filled with dredged soil. Zoysia japonica was planted using sod-pitching method on the control plot. On plots which were treated with forest soil and soil improvement, Zoysia japonica seeds were sprayed mechanically. Sixteen months after planting, coverage rate, leaf length, leaf width, and root length were measured and analyzed. Also, three Zoysia japonica samples per plot were collected to analyze nutrient contents. Coverage rate was 100% in B treatment plot(dredged soil+$40kg/m^3$ soil improvement+forest soil), in C treatment plots (dredged soil+$60kg/m^3$ soil improvement+forest soil), and D treatment plots (dredged soil+$60kg/m^3$ soil improvement), while only 43% of the soil surface was covered with Zoysia japonica on control plots. The width of the leaf on C treatment plots (3.79mm) was the highest followed by D treatment (3.49mm), B treatment (2.40mm) and control plots (1.97mm). Leaf and root length of D treatment was 30.18cm and 13.18cm, which were highest among different treatments. The leaf length of D treatment was highest followed by C, B, and A treatments. The root length of D treatment was highest followed by C, A, and B treatments. The nitrogen and phosphate contents of the above ground part of Zoysia japonica were highest in C treatment, followed by D, B, and A treatments. The nitrogen and phosphate contents of the underground part of Zoysia japonica were highest in D treatment, followed by C, A, and B treatments. C and D treatments showed the best results in every aspect of grass growth. The results of this study could be used to identify the cost effective way to improve soil quality for soil surface fixation on reclaimed areas using grass species.

The Content and Risk Assessment of Heavy Metals in Herbal Pills (유통 환제의 유해 중금속 함량 및 위해도 평가)

  • Lee, Sung-Deuk;Lee, Young-Ki;Kim, Moo-Sang;Park, Seok-Ki;Kim, Yeon-Sun;Chae, Young-Zoo
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this study is investigation of contamination levels and assessment of health risk effects of heavy metals in herbal pills. 31 Items and 93 samples were obtained for this investigation from major herbal medicine producing areas, herbal markets and on-line supermarkets from Jan to Jun in 2010. Inductively coupled plasma mass spectrometer method was conducted for the quantitative analysis of Pb, Cd and As. In addition, the mercury analyzer system was conducted for that of Hg without sample digestion. The average contents of heavy metals in samples were as follows : 0.87 mg/kg for Pb, 0.08 mg/kg for Cd, 2.87 mg/kg for As and 0.16 mg/kg for Hg, respectively. In addition, the average contents of heavy metals in different parts of plants, including cortex, fructus, herba, radix, seed, algae and others were 0.63 mg/kg, 3.94 mg/kg, 1.42 mg/kg, 1.05 mg/kg, 0.16 mg/kg, 22.31 mg/kg and 10.17 mg/kg, respectively. After the estimations of dietary exposure, the acceptable daily intake (ADI), the average daily dose (ADD), the provisional tolerable weekly intake (PTWI) and the relative hazard of heavy metals were evaluated. As the results, the relative hazards compared to PTWI in samples were below the recommended standard of JECFA as Pb 3.1%, Cd 0.9%, Hg 0.5%. Cancer risks through slope factor (SF) by Ministry of Environment Republic Korea and Environmental Protection Agency was $4.24{\times}10^{-7}$ for Pb and $3.38{\times}10^{-4}$ for As (assuming that the total arsenic content was equal to the inorganic arsenic). Based on our results, possible Pb-induced cancer risks in herbal pills according to parts used including cortex, fructus, herba, radix, seed, algae and others were $1.95{\times}10^{-7}$, $1.45{\times}10^{-6}$, $2.14{\times}10^{-7}$, $6.27{\times}10^{-7}$, $1.99{\times}10^{-8}$, $3.61{\times}10^{-7}$ and $9.64{\times}10^{-8}$, respectively. Possible As-induced cancer risks in herbal pills by parts used including cortex, fructus, herba, radix, seed, algae and others were $1.54{\times}10^{-5}$, $7.24{\times}10^{-5}$, $1.23{\times}10^{-4}$, $2.02{\times}10^{-5}$, $3.25{\times}10^{-6}$, $2.18{\times}10^{-3}$ and $5.67{\times}10^{-6}$ respectively. Taken together, these results indicate that the majority of samples except for some samples with relative high contents of heavy metals were safe.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

A Study on the Funerary Mean of the Vertical Plate Armour from the 4th Century - Mainly Based on the Burial Patterns Shown by the Ancient Tombs No.164 and No.165 in Bokcheon-dong - (종장판갑(縱長板甲) 부장의 다양성과 의미 - 부산 복천동 164·165호분 출토 자료를 중심으로 -)

  • Lee, Yu Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.178-199
    • /
    • 2011
  • The ancient tombs found in Bokcheon-dong, Busan originate from the time between the $4^{th}$ and $5^{th}$ centuries, the period of the Three Nations. They are known as the tombs where the Vertical Plate Armour was mainly buried. In 2006, two units of the Vertical Plate Armour were additionally investigated in the tombs No.164 and No.165 which had been constructed at the end of the eastern slope near the hill of the group of ancient tombs in Bokcheon-dong. Throughout this study, the contents of the two units of the Vertical Plate Armour, whose preservation process has been completed, have been arranged, while the group of constructed ancient tombs in Bokcheon-dong from the $4^{th}$ century has been observed through the consideration of the burial pattern. The units of the Vertical Plate Armour from the tombs No.164 and No.165 can be classified as the IIa-typed armor showing the Gyeongju and Ulsan patterns, according to the attribute of the manufacturing technology. Also, they can be chronologically recorded as those from the early period of Stage II among the three stages regarding the chronological recording of the Vertical Plate Armour. While more than two units of the Vertical Plate Armour were buried in the largesized tomb on the top of the hill of the group of ancient tombs, one unit of the Vertical Plate Armour was buried in the small-sized tomb. By considering such a trend, it can be said that in the stage of burying the armor showing the Gyeongju and Ulsan patterns (I-type and IIa-type), different units of the Vertical Plate Armour were buried according to the size of the tomb. However, as the armor showing the Busan pattern (IIb-type) was settled, only one unit was buried. Meanwhile, the tombs No.164 and No.165 can be included in the wooden chamber tomb showing the Gyeongju pattern, which is a slender rectangular wooden chamber tomb with the aspect ratio of more than 1:3. However, according to the trend shown by the buried earthenware, it can be said that there seem to be common types and patterns shared with the earthenware which has been found in the area of Gimhae and is called the one showing the Geumgwan Gaya pattern. In other words, there seem to be close relationships between the subject tombs and the tomb No.3 in Gujeong-dong and the tomb No.55 in Sara-ri, Gyeongju, regarding the types of armor and tombs and the arrangement of buried artifacts. However, the buried earthenware shows a relationship with the areas of Busan and Gimhae. By considering the combined trend of the Gyeongju and Gimhae elements found in one tomb, it is possible to assume that the group of constructed ancient tombs in Bokcheon-dong used to be actively related with both areas. It has been thought that the Vertical Plate Armour used to be the exclusive property of the upper hierarchy until now, since it was buried in the large-sized tomb located on the top of the hill of the group of ancient tombs in Bokcheondong. However, as shown in case of the tombs No.164 and No.165, it has been verified that the Vertical Plate Armour was also buried in the small-sized tomb in terms of such factors as locations, sizes, the amount of buried artifacts and the qualitative aspect. Therefore, it is impossible to discuss the hierarchical characteristic of the tomb just based on the buried units of the Vertical Plate Armour. Also, it is difficult to assume that armor used to symbolize the domination of the military forces. The hierarchical characteristic of the group of constructed ancient tombs in Bokcheon-dong from the $4^{th}$ century can be verified according to the location and size of each tomb. As are sult, the re seem to be some differences regarding the buried units of the vertical plate armour. However, it would be necessary to carry out amore multilateral examination in order to find out whether the burial of the vertical plate armour could be regarded as the artifact which symbolizes the status or class of the deceased.

Influence of Microcrack on Brazilian Tensile Strength of Jurassic Granite in Hapcheon (미세균열이 합천지역 쥬라기 화강암의 압열인장강도에 미치는 영향)

  • Park, Deok-Won;Kim, Kyeong-Su
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.41-56
    • /
    • 2021
  • The characteristics of the six rock cleavages(R1~H2) in Jurassic Hapcheon granite were analyzed using the distribution of ① microcrack lengths(N=230), ② microcrack spacings(N=150) and ③ Brazilian tensile strengths(N=30). The 18 cumulative graphs for these three factors measured in the directions parallel to the six rock cleavages were mutually contrasted. The main results of the analysis are summarized as follows. First, the frequency ratio(%) of Brazilian tensile strength values(kg/㎠) divided into nine class intervals increases in the order of 60~70(3.3) < 140~150(6.7) < 100~110·110~120(10.0) < 90~100(13.3) < 80~90(16.7) < 120~130·130~140(20.0). The distribution curve of strength according to the frequency of each class interval shows a bimodal distribution. Second, the graphs for the length, spacing and tensile strength were arranged in the order of H2 < H1 < G2 < G1 < R2 < R1. Exponent difference(λS-λL, Δλ) between the two graphs for the spacing and length increases in the order of H2(-1.59) < H1(-0.02) < G2(0.25) < G1(0.63) < R2(1.59) < R1(1.96)(2 < 1). From the related chart, the six graphs for the tensile strength move gradually to the left direction with the increase of the above exponent difference. The negative slope(a) of the graphs for the tensile strength, suggesting a degree of uniformity of the texture, increases in the order of H((H1+H2)/2, 0.116) < G((G1+G2)/2, 0.125) < R((R1+R2)/2, 0.191). Third, the order of arrangement between the two graphs for the two directions that make up each rock cleavage(R1·R2(R), G1·G2(G), H1·H2(H)) were compared. The order of arrangement of the two graphs for the length and spacing is reverse order with each other. The two graphs for the spacing and tensile strength is mutually consistent in the order of arrangement. The exponent differences(ΔλL and ΔλS) for the length and spacing increase in the order of rift(R, -0.08) < grain(G, 0.14) < hardway(H, 0.75) and hardway(H, 0.16) < grain(G, 0.23) < rift(R, 0.45), respectively. Fourth, the general chart for the six graphs showing the distribution characteristics of the microcrack lengths, microcrack spacings and Brazilian tensile strengths were made. According to the range of length, the six graphs show orders of G2 < H2 < H1 < R2 < G1 < R1(< 7 mm) and G2 < H1 < H2 < R2 < G1 < R1(≦2.38 mm). The six graphs for the spacing intersect each other by forming a bottleneck near the point corresponding to the cumulative frequency of 12 and the spacing of 0.53 mm. Fifth, the six values of each parameter representing the six rock cleavages were arranged in the order of increasing and decreasing. Among the 8 parameters related to the length, the total length(Lt) and the graph(≦2.38 mm) are mutually congruent in order of arrangement. Among the 7 parameters related to the spacing, the frequency of spacing(N), the mean spacing(Sm) and the graph (≦5 mm) are mutually consistent in order of arrangement. In terms of order of arrangement, the values of the above three parameters for the spacing are consistent with the maximum tensile strengths belonging to group E. As shown in Table 8, the order of arrangement of these parameter values is useful for prior recognition of the six rock cleavages and the three quarrying planes.

A Review of Current Status and Placeness on the Yusang-Goksu Ruins in Hwanggak-dong, Geumma, Iksan (익산 금마 황각동 유상곡수 유적 일대의 현황과 장소성에 대한 일고찰)

  • Rho, Jae-Hyun;Han, Min-Soon;Seo, Youn-Mi;Park, Yool-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.20-35
    • /
    • 2022
  • This study was conducted on the locational results of the 'Yusanggoksu(流觴曲水)' petroglyphs located in Hwanggak-dong(黃閣洞), Shinsong-ri, Geumma-myeon, Iksan-si through literature study, analysis of old maps and aerial photos, field observations, drone photography, elevation surveys, and interviews with residents. It was attempted for the purpose of illuminating and preserving the relics of the domestic Yusanggoksu garden by clarifying the spatiality of this place by tracing the spatiality and examining the possibility of enjoying the Yusanggoksu water system in this place. The conclusion of this study is as follows. The area around Hwanggak-dong, where the Yusanggoksu remains, has been selected as the most beautiful scenic spot in Iksan in various documents. The origin of 'Hwanggak' is considered to be closely related to the nickname of Uijeongbu(議政府). In other words, he paid attention to the relationship with Yanggok, So Se-yang(蘇世讓), who served as Chan-seong Jwa(左贊成). In particular, he paid attention to the relationship with his birthplace, Taeheojeong, a separate book, and Toehyudang, a retreat hall), tombs, and posthumous Confucian academies were distributed in the vicinity. Haseo-dae(荷鋤臺), a wide rock on which a hoe is hung on a rock after field work, seems to express a leisurely rural life and a simple and hermit life, based on the examples of Chinese and Korean poetry. The dark blood on the upper part of the Seobwi Rock with the inscription 'Yusanggoksu', which is the core of this site, is identified as a chailgong(遮日孔) to support the water system, and Ilgan-pavilion and Mojeong(茅亭) nearby are to support the yusanggoksu. It seems to have performed a spatial function for The inscription 'Hwanggak-dong' engraved on the front of Deungzanbawi is the gateway to Hwanggakdongcheon(黃閣洞天) and identified the idealized world existing in the village. Judging from the documentary records of the Iksan-gun 『Chongswaelog(叢瑣錄)』, the rock letters 'Hwanggak-dong' and 'Haseodae' were engraved on March 29, 1901, the 5th year of Gwangmu, the 5th year of the Korean Empire, by Iksan-gun Governor Oh Haeng-mook(吳宖默) and his acquaintance Seokseong Kim In-gil(金寅吉) Confirmed. Also, considering the tense of Lee Bong-gu's 「Hwanggakdongun(黃閣洞韻)」 and So Jin-deok, a descendant of Yanggok, 「Hwanggakdongsihoe(黃閣洞詩會)」, it is presumed that it was related to Goksuyeon(曲水宴) in Hwanggak-dong. It can be inferred that the current affairs meetings were held at least until the early days of Japanese colonial rule. Meanwhile, the maximum width of the current curved waterway was calculated as 11.3m and the transverse slope was 15.0%. If so, it is estimated that the width and extension distance of the curved waterway would have been much longer. Judging from the use of mochun(暮春), drinking and poetry, the tense 'Hwanggakdongsihoe' related to the Yusanggoksu relics in Hwanggak-dong, and the existence of a pavilion presumed to be Yusangjeong(流觴亭) called Ilgan-pavilion in the nearby Yusanggoksu site It is confirmed that it was a space where Yusanggoksuyeon(流觴曲水宴) spread at least until the end of the Joseon Dynasty. Unfortunately, it remains a limitation of the study that it cannot be confirmed due to lack of data on the rock characters of 'Yusanggoksu' and those who enjoyed it before the end of the Joseon Dynasty. This is an area that needs to be elucidated through continuous efforts to find data on this issue in the future.

Ecological Characteristics of Leading Shoot Elongation in the Plantation (I) (조림목(造林木) 신초생장(新稍生長)의 생태학적특성(生態學的特性)에 관(關)한 연구(硏究) (I))

  • Ma, Sang Kyu;Kuk, Ung Hum
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.37-43
    • /
    • 1980
  • This study have done to get the basical information that would be useful to make the ecological planting, selection of suitable species and weeding plan by the relation between the leading shoot elongation of several species and the climatic factors in the plantation. Sampling measurement have been done in the trial forest of Korean German Forest Management Project located in Joil-ri, Samnam-myeon and Ichcon-ri, Sangbug-myeon, Ulju-gun. The former is in lowland at 100m latidude and the latter is in highland of 600 m latitude. The elongation of leading shoot has been measured in the plantation with 10 days interval from the beginning of March in 1979 and the climatic datas has gotten in the weather station closed to the plantation. 1. The change of air temperature and rainfall in each measuring site is like Fig 1. and 2. The similar temperature in 600 m high latitude is coming about 10 days latter than 100 m latitude. 2. Genus pine as Pinus thunbergii, P. rigida, P. rigitaeda. P. koraiensis and P. taeda begin their leading shoot growth during March and air temperature in that time is around $6^{\circ}C$. In highland their beginning of leading shoot elongation has been found out 10 days latter than lowland. However Abies, Larix and Picea has shown to open their leading shoot during May, 40 days late in comparing with genus pine, and then temperature is making around $15^{\circ}C$. But Cryptomeria, Chamaecyparis and Cedrus deodora has shown their leading shoot opening in March in lowland and May in high land. The reason of late opening, specially in highland, seems to be the influence of winter frost. 3. Most of leading shoot elongation of genus pine has finished during the end 10 days of April and May under range of air temperate $10^{\circ}C$ and $20^{\circ}C$ and other species has finished most of their elongation during the end 10 days of May and June with air temperature range of $18^{\circ}C$ to $20^{\circ}C$. So the suitable season of weeding works show to genus pine in May and other species in June. 4. The leading shoot growth of genus pine has started earlier and closed earlier too than other species and, when over than $20^{\circ}C$ air temperature, their growth is decreasing quickly. Pices abies as well show to be decreased suddenly in over than $20^{\circ}C$ temperature. Other species show the similar trend when over than $22^{\circ}C$. This reason is considered as high temperature of summer season. 5. Annual elongated days of leading shoot of Picea abies is 50 days, Abies hollophylla 70 days, and more than 85 percentage of shoot growth of Pinus koraiensis and Larix leptolepsis are growing during 70 dys as well. The shoot growing days of Chamaecyparis, P. rigida, P. rigitaeda, P. taeda and P. shunbergii show longer period as over than 120 days. 6. The shoot elongation times per year of Abies and Picea has closed as one times and Genus pine is continuring their elongation more than two times. But Cryptomeria, Chamaecyparis, Cedrus deodora and Larix show one or two times elongation depending on the measuring site. The reason of continuring elongation more than than two times seems to be influenced by the temperature in summer season except the genetical reason. 7. Depending on the above results, as the high temperature in summer season could give the influence to grow the leading shoot in the plantation, this would be the considering point on the ecological planting and selection of the suitable species to the slope aspect. The elongation pattern by the season show to be the considering point too to decide the the weeding and fertilizer dressing time by the species.

  • PDF

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF