• 제목/요약/키워드: slip flow

검색결과 362건 처리시간 0.021초

확산방정식을 이용한 헬리컬 드래그펌프의 성능해석 (Analysis of Pumping Performance of a Helical Drag Pump Using the Diffusion Equation)

  • 허중식
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.382-391
    • /
    • 2008
  • A simple analytical model of rarefied channel flow is developed to predict the compression ratio in a helical drag pump. If the surface velocity is zero, the model reduces to a capillary leaks. Predictions of our model agree well with the Knudsen's data for capillary leaks in transition flow, in addition to giving a good account of the Knudsen minimum. Also, the present results are compared with experimental data, and good agreement is obtained over the entire pressure range from molecular to slip flow.

드래프트 관 장착 나선형 교반장치의 작동 특성 연구 (A Study on the Operating Characteristics in a Helical Screw Agitator with a Draught Tube)

  • 황정훈;김윤제
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1162-1167
    • /
    • 2006
  • Because the mixing efficiency is influenced remarkably by varying the geometrical configurations, the study of flow characteristics inside the agitator is very important. The draught tube in the agitator makes intermixing between the screw and tube by interrupting radial flow, and the helical screw agitator with a draught tube (HSA) is proved more efficient to mix than the others. Consequently, the shapes of helical screw and number of pitches are the main parameters for improving the performance of HSA. In this study, numerical analyses were carried out, using a commercial CFD code, Fluent, to obtain the velocity and pressure distributions under steady, laminar flow and no-slip condition. Results are graphically depicted with various parameters.

  • PDF

Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad N.;Naim, Abdullah F. Al;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.33-45
    • /
    • 2021
  • The Runge-Kutta method of 6th-order has been employed in this paper to analyze the flow of Casson nanofluid along permeable exponentially stretching cylinder. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. The aim of the paper is to investigate the effects of different parameters such as Casson fluid parameter, slip parameter, suction parameter, Prandtl number, Lewis number, Brownian motion parameter, and thermophoresis parameter, with the variation of mass concentration profile. Numerical results are attained using a renowned numerical scheme shooting technique and for the authenticity of present methodlogy, the results are verified with earlier open text.

Settlement of velocity dissemination with fluid parameters for the configuration of stretching cylinder

  • Jalil, Mudassar;Iqbal, Waheed;Hussain, Muzamal;Khadimallah, Mohamed A.;Alshoaibi, Adil;Baili, Jamel;Khedher, Khaled Mohamed;Ali, Elimam Abdallah;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.389-396
    • /
    • 2022
  • This investigation in fluid mechanics surrounds around the variety of flow problems for different fluids along the stretching cylinder. Numerical procedure is carried out for the obtained resultant equations by Keller-Box technique. Numerical study of laminar, steady, viscous and incompressible two dimensional boundary layer flow of effects of suction and blowing on boundary layer slip flow of Casson fluid along permeable exponentially stretching cylinder has been carried out in the present draft. physical parameters i.e., Nusselt number and skin friction coefficient, suction parameter and the local Reynold number are investigated on velocity profile and elaborated through proper graphs and table.

Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid

  • Muzamal Hussain;Humaira Sharif;Mohamed A. Khadimallah;Abir Mouldi;Hassen Loukil;Mohamed R. Ali;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.295-302
    • /
    • 2023
  • The characteristics of motile microorganism and three dimensional Darcy-Forchheimer nanofluid flow by a porous rotatable disk with heat generation/absorption is reported. Thermophoretic and Brownian motion aspects are included by utilizing Buongiorno model. Moreover, slip conditions are considered on velocity, thermal, concentration and microorganism. Shooting procedure is implemented to find the numerical results of physical quantities are evaluated parametrically. The different physical parameters like heat sink/source parameter, thermal, Brownian number, thermophoresis parameter, concentration, Peclet number, bioconvected Lewis number, microorganism on concentration and density of motile microorganism distributions is considered. Graphs of concentration and microorganism are plotted to examine the influence of distinct prominent flow parameters.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

철도터널 화재 유동에 사용되는 FDS code의 적용성 분석 (The Applicability Analysis of FDS code for Fire-Driven Flow Simulation in Railway Tunnel)

  • 장용준;박원희
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.224-230
    • /
    • 2007
  • The performance and applicability of FDS code is analyzed for flow simulation in railway tunnel. FDS has been built in NIST(USA) for simulation of fire-driven flow. RANS and DNS's results are compared with FDS's. AJL non-linear ${\kappa}-{\epsilon}$[7,8] model is employed to calculate the turbulent flow for RANS. DNS data by Moser et al.[9] are used to prove the FDS's applicability in the near wall region. Parallel plate is used for simplified model of railway tunnel. Geometrical variables are non-dimensionalized by the height (H) of parallel plate. The length of streamwise direction is 50H and the length of spanwise direction is 5H. Selected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The characteristics of turbulent boundary layer are introduced. AJL model's predictions of turbulent boundary layer are well agreed with DNS data. However, the near wall turbulent boundary layer is not well resolved by FDS code. Slip conditions are imposed on the wall but wall functions based on log-law are not employed by FDS. The heavily dense grid distribution in the near wall region is necessary to get correct flow behavior in this region for FDS.

준설토 이송고효율화를 위한 유동특성의 실험적 분석 (Experimental study on flow characteristics for the high efficiency transporting of the dredged soil)

  • 김유승;이명한;이수연
    • 한국지반신소재학회논문집
    • /
    • 제15권1호
    • /
    • pp.71-81
    • /
    • 2016
  • 준설토 이송 시 윤활층에 전자기장을 인가하여 이송 동력을 절감하고, 송토량을 증가시키는 연구의 일환으로, 이런 전자기장 장치의 실제 적용성을 검증하고자 실현장 8.5km의 이송거리의 준설현장에 전자기장 장치를 설치하여 그 효과를 검증하였다. 이송 유속에 관계되는 운전 조건 및 토질상태와 유동상태를 모니터링하고, 획득한 데이터를 송토량과 동력 사이의 관계로 정리하여 전자기장 인가 후 약 30%의 동력대비 이송량 증가가 있음을 확인하였고, 이를 통해 전자기장 인가가 준설토 이송 시 동력절감에 효과가 있음을 확인하였다.

배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구 (A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF