• 제목/요약/키워드: slip critical connections

검색결과 13건 처리시간 0.018초

Slip-resistant bolted connections under freeze-thaw cycles and low temperature

  • A. Fuente-Garcia;M.A. Serrano-Lopez;C. Lopez-Colina;F., Lopez-Gayarre
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.251-262
    • /
    • 2023
  • There are many examples of steel structures subjected to severe environmental conditions with bolted connections directly exposed to extreme climatic agents such as freeze-thaw cycles or low temperatures. Some examples are: steel bridges, mining transfer towers, wind towers... These service conditions neither are included in Eurocode 3 or EN1090-2, nor there are references in other international standards. In this experimental research, 46 specimens of non-slip joints with HV M20 bolts and four different types of contact surfaces have been studied. Half of the specimens were subjected to fourteen twelve-hours freeze-thaw cycles, with periodic immersion in water and temperature oscillation. Subsequently, half of the connections were subjected to a slip test under monotonic load at temperature of -20 ± 0.5 ℃ and the other half at room temperature. The results were compared with others equal joints not subjected to freeze-thaw cycles and kept at room temperature for the same time. This finally resulted in 4 sets of joints by combining the freeze-thaw degradation or not with the low-temperature conditions or not in the slip testing. Therefore, a total of 16 different conditions were studied by also considering 4 different contact surfaces between the joined plates in each set. The results obtained show influence of environmental conditions on the slip resistant capacity of these joints.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구 (Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice)

  • 이철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

The effect of mainshock-aftershock on the residual displacement of buildings equipped with cylindrical frictional damper

  • Mirtaheri, Masoud;Amini, Mehrshad;Rad, Moosa Doosti
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.515-527
    • /
    • 2017
  • Recently, Friction dampers become popular due to the desirable performance in the energy dissipation of lateral loads. A lot of research which has been conducted on these dampers results in developing friction dampers with low sensitivity to the number of cycles and temperature increases. Friction dampers impose high residual drifts to the buildings because of low post-yield stiffness of the damper which results from increasing lateral displacement and period of buildings. This issue can be more critical under strong aftershocks which results in increasing of structural damages. In this paper, in addition to the assessment of aftershock on steel buildings equipped with friction dampers, methods for controlling residual drifts and decreasing the costs of retrofitting are investigated. Utilizing rigid connections as a lateral dual system and activating lateral stiffness of gravity columns by adding elastic braces are as an example of effective methods investigated in this research. The results of nonlinear time history analyses on the low to medium rise steel frames equipped with friction dampers illustrate a rise in residual drifts as the result of aftershocks. In addition, the results show that different slip loads of friction damper can affect the residual drifts. Furthermore, elastic stories in comparison to rigid connections can reduce residual drifts of buildings in an effective fashion, when most slip loads of friction dampers are considered.

Refined damage prediction of low-rise building envelope under high wind load

  • Pan, F.;Cai, C.S.;Zhang, W.;Kong, B.
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.669-691
    • /
    • 2014
  • Since low-rise residential buildings are the most common and vulnerable structures in coastal areas, a reliable prediction of their performance under hurricanes is necessary. The present study focuses on developing a refined finite element model that is able to more rigorously represent the load distributions or redistributions when the building behaves as a unit or any portion is overloaded. A typical 5:12 sloped low-rise residential building is chosen as the prototype and analyzed under wind pressures measured in the wind tunnel. The structural connections, including the frame-to-frame connections and sheathing-to-frame connections, are modeled extensively to represent the critical structural details that secure the load paths for the entire building system as well as the boundary conditions provided to the building envelope. The nail withdrawal, the excessive displacement of sheathing, the nail head pull-through, the sheathing in-plane shear, and the nail load-slip are found to be responsible for the building envelope damage. The uses of the nail type with a high withdrawal capacity, a thicker sheathing panel, and an optimized nail edge distance are observed to efficiently enhance the building envelope performance based on the present numerical damage predictions.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구 (Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice)

  • 이철호;박종원
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.115-122
    • /
    • 1998
  • 고력볼트로서 슬립이 발생치 않도록 설계된 철골모멘트골조의 보 이음부의 내진거동을 반복재하 실물대 실험을 통하여 평가하였다. 예상과는 달리 모메트 접합부가 극한 소성강도에 도달하기 훨씬 이전에 보 이음부의 슬립이 발생하였다 실험을 통하여 관측된 마찰계수는 규준 공칭값의 50-60%에 불과하였다. 그러나 보 플랜지의 열영향부가 파단에 이르기 까지 슬립 이후의 지압거동을 통하여 증가되는 반복하중을 성공적으로 모멘트접합부로 전달하였다. 즉 반복하중 하에서도 보 이음부의 슬립이 곧바로 구조적 일체성의 상실로 이어지지는 않음이 관측되었다 볼토구멍을 공제한 보 플랜지 유효단면적의 전강도에 기준한 전통적 보 이음부 설계법에 의할 경우 모멘트 접합부의 소성강도 발현 이전에 보 이음부의 슬립발생 가능성이 높다 본 연구에서는 역량설계 개념에 기초하여 강진 작용시의 보 이음부의 설계와 관련한 추가 고려사항을 제안하였다.

  • PDF

실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측 (Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments)

  • 나환선;이현주
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.