• Title/Summary/Keyword: slip coefficients

Search Result 71, Processing Time 0.026 seconds

Friction-induced Vibration of a Linear Compressor (Linear Compressor에서 발생하는 마찰에 의한 진동 연구)

  • 박종찬;왕세명;정충민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.695-700
    • /
    • 2003
  • This paper dealt with friction-induced vibrations in engineering practice, specifically arising at the moment of counterturn of two friction surfaces. The harshness of the vibrations are attributed to the sharp change of the friction coefficients from kinetic to static near zero relative velocity, which is one of the examples of the stick slip. But the experimental results and numerical analysis of piston and cylinder operation showed that transition of the friction coefficient from kinetic to static is insignificant in vibrations. Dry friction itself dominates the harshness of vibrations. This study shows that how dry friction triggers the vibrations and demonstrates the effect of sharp transition from kinetic to static friction coefficient on the vibrations.

  • PDF

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Study of the RBTRAN Code for Upper Plenum Analysis in Very Small LOCA (매우 작은 규모의 LOCA에 있어서 Upper Plenum분석을 위한 RETRAN코드의 연구)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.125-130
    • /
    • 1984
  • In the application of the RETRAN code to the analysis of very small LOCA one of main concerns is placed on use of the bubble rise model in the upper plenum, because the bubble rise model nay cause a numerical divergence problem and coefficients used to describe it are based on experimental results of large LOCA. In order to solve this problem, a method, which enables us to predict the mixture level in the upper plenum without use of the bubble rise model, was proposed. For this method the local void distribution in the core and upper plenum was derived by using a simplified slip model. It was shown that results predicted from the derived equation are in excellent agreement with experimental data. Additionally it was found that local void in the upper plenum has a uniform distribution unlike a linear distribution in large LOCA. Communication between the upper plenum and upper head was investigated. By introducing the concept of Taylor instability, it was proved that counter-current Hon between them is possible.

  • PDF

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.

Sliding Wear and Fretting Wear of Steam Generator Tube Materials (증기발생기 튜브재질의 미끄럼 마멸 및 프레팅 마멸 특성)

  • 김동구;조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.380-385
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 600 and 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air environment. Fretting tests were done under various vibrating amplitudes and applied normal loads. From the results of sliding and fretting wear tests, the wear of Inconel 600 and 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. It was found the results that the wear coefficients for Inconel 600 and 690 were 262.3$\times$10$\^$-15/Pa$\^$-1/ and 209.2$\times$10$\^$-15/Pa$\^$-1/, respectively. This study shows that Inconel 690 can provide much better wear resistance than Inconel 600 in air.

Modeling of bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.355-368
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods are used as reinforcement (prestressed or not) to concrete. FRP composites can also be combined with steel to form hybrid reinforcing rods that take advantage of the properties of both materials. In order to effectively utilize these rods, their bond behavior with concrete must be understood. The objective of this study is to characterize and model the bond behavior of hybrid FRP rods made with epoxy-impregnated aramid or poly-vinyl alcohol FRP skins directly braided onto a steel core. The model closely examines the split failure of the concrete by quantifying the relationship between slip of the rods resulting transverse stress field in concrete. The model is used to derive coefficients of friction for these rods and, from these, their development length requirements. More testing is needed to confirm this model, but in the interim, it may serve as a design aide, allowing intelligent decisions regarding concrete cover and development length. As such, this model has helped to explain and predict some experimental data from concentric pull-out tests of hybrid FRP rods.

Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube (원형튜브내에서 이동중인 고체입자층의 열전달 특성연구)

  • 이금배;박상일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

A study on the V and X shpe defects in I $n_{0.53}$GaTEX>$_{0.47}$As/InTEX>$_{0.52}$AlTEX>$_{0.48}$As/InP P-HEMT structure grown by molecular beam epitaxy method (分子線에피택셜 方法으로 成長한 I $n_{0.53}$GaTEX>$_{0.47}$As/InTEX>$_{0.52}$AlTEX>$_{0.48}$As/InP P-HEMT 構造內의 V 및 X字形 缺陷에 關한 硏究)

  • 이해권;홍상기;김상기;노동원;이재진;편광의;박형무
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.56-61
    • /
    • 1997
  • I $n_{0.53}$G $a_{0.47}$As/I $n_{0.52}$A $l_{0.48}$As pseudomorphic high electron mobility transistor (P-HEMT) structures were grown on semi-insulating InP substrates by molecular beam epitzxy method. The hall effect measuremetn was used to measure the electrical properties and the photoluminescence (PL) measurement was used to measure the electrical properties and the photoluminescence(PL) measurement for optical propety. By the cross-sectional transmission electron microscopy (XTEM) investigation of the V and X shape defects including slip with angle of 60.deg. C and 120.deg. C to surface in the sampel, the defects formation mecahnism in the I $n_{0.52}$A $l_{0.48}$As epilayers on InP substrates could be explained with the different thermal expansion coefficients between I $n_{0.52}$A $l_{0.48}$As epilayers and InP substrate.d InP substrate.

  • PDF

A Study on Estimating of Fretting Wear of a Spline Coupling (스플라인 커플링의 프레팅 마멸 예측에 관한 연구)

  • Kim, Eung-Jin;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.256-260
    • /
    • 2009
  • Fretting is a kind of wear which effects on reliability and durability. When machine parts are joined joint in parts such as a bolt or a rivet or a pin, fretting phenomenon is occurred by micro relative movement. When fretting occurs in joint parts, there is wear which is the cause of fatigue crack. Recently, although the ways of assessment of fatigue and damage tolerance are established, there is no way to evaluate fatigue crack initiation life by fretting phenomenon. Consequently, the prediction of life and prevention plan caused by fretting are needed to improve reliability. The objective of this paper is to predict fretting wear by using a experimental method and contact analysis considering wear process. For prediction of fretting wear volume, systematic and controlled experiments with a disc-plate contact under gross slip fretting conditions were carried out. A modified Archard equation is used to calculate wear depths from the contact pressure and stroke using wear coefficients obtained from the disc-plate fretting tests.

Friction and Wear Characteristics of PTFE-Polyimide Composite (PTFE-폴리이미드 복합 재료의 마찰과 마모 특성)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.28-34
    • /
    • 1995
  • PTFE has good mechanical and chemical stability at wide temperature range, and more over, shows a low value of friction coefficient. On the other hand, it shows cold flow and high wear rate. However, these short comings can be overcome by adding various fillers. In this experiment, PTFE and polyimide powder were mixed into composite and its tribological characteristics was investigated. 100% polyimide was also tested for comparison. The countefface material was a stainless steel (SUS304). Friction and wear tester of ring-on-block type was used at room temperature and under atmosphere. After the wear test, the worn surfaces were examined by optical microscope. The test results show that PTFE-polyimide composite generates. the wear transfer film on both sides of the friction surfaces, and, the friction coefficient and the wear rates are relatively low. 100% polyimide generated little wear transfer films, showed high friction and wear rates, and also showed some problems of vibration and noise. It even damaged the stainless steel countefface. It was concluded that 100% polyimide does not generate transfer film well because its shear resistanbe is high and it stickslips, thus, friction coefficients and wear rates are high. In case of PTFE-polyimide composite, on the other hand, transfer film containing sufficient PTFE adheres and remains on both wear surfaces well enough because PTFE has low shear resistance. Polyimide particles in the composite were proved to be able to bear normal load and does not show stick-slip because they are covered with transfer film containing much PTFE.