• 제목/요약/키워드: slightly warm

검색결과 81건 처리시간 0.02초

중온화 첨가제 첨가비율에 따른 현장 적용성 평가 및 실내 역학적 거동 특성 연구 (Evaluation of Field Application and Laboratory Performance of Warm-Mix Asphalt According to the Dosage Rate of Additive)

  • 양성린;백철민;황성도;권수안
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.117-125
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate of field application and laboratory performance of warm-mix asphalt (WMA) according to the dosage rate of organic-based WMA additive. METHODS: Three asphalt mixtures, i.e., hot mix asphalt (HMA), WMA with the dosage rate of 1.5%, WMA with the dosage rate of 1.0%, were sampled from the asphalt plant when the field trial project were constructed. With these mixtures, the laboratory testings were performed to evaluate the linear viscoelastic characteristics and the resistance to moisture, rutting and fatigue damage. RESULTS : From the laboratory test results, it was found that the WMA with the reduced dosage rate of additive would be comparable to HMA and WMA with the original dosage rate in terms of the dynamic modulus, tensile strength ratio, rutting resistance. However, the fatigue reisistance of WMA with the reduced dosage rate was slightly worse but it should be noted that the fatigue performance is necessarily predicted by combining the material properties and pavement structure. CONCLUSIONS: Through the field construction and laboratory testings, the dosage rate of organic-based WMA additive could be reduced from 1.5% to 1.0% without the significant decrease of compactability and laboratory performance. The long-term performance of the constructed pavement will be periodically monitored to support the findings from this study.

흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향 (The effect of fuel evaporation in the intake valve back on mixture preparation)

  • 박승현;이종화;유재석;신영기;박경석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

Effect of the Environmental Conditions on the Structure and Distribution of Pacific Saury in the Tsushima Warm Current Region

  • Gong, Yeong;Suh, Young-Sang
    • 한국환경과학회지
    • /
    • 제12권11호
    • /
    • pp.1137-1144
    • /
    • 2003
  • To provide evidence that the changes in oceanic environmental conditions are useful indices for predicting stock structure and distribution of the Pacific saury (Cololabis saira), the body length compositions and catch per unit fishing effort were examined in relation to the sea surface temperature(SST) anomalies in the Tsushima Warm Current(TWC) region. The size of the fish became larger(smaller) than the average in the same size category during the season of higher SST(lower SST) as opposed to the normal SST. The year-to-year changes in body size caused by the changes in the environmental conditions led the stock to be homogeneous during the period of high stock level from the late 1950s to early 1970s and in the 1990s. The changes in body size manifested by higher(lower) occurrence rates of larger (smaller) sized groups in relation to temperature anomalies suggest that the changes in the environmental conditions affect the distribution and the structure of the stock in the TWC region. Therefore, if the SST anomaly derived from satellite data is large enough in the early spring months(Mar. or Apr.), it is possible to predict whether or not sea temperature will be favorable for large sized groups of saury at normal or slightly earlier time of commencement of the fishery in spring(Apr.∼June).

Application of the Ventilation Theory to the East Sea

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • 제32권1호
    • /
    • pp.8-16
    • /
    • 1997
  • The ventilation theory developed by Luyten, Pedlosky and Stommel (1983) is applied to the East Sea to understand the general circulation pattern of the Intermediate Water, especially the ventilated circulation beneath the Tsushima Warm Current. The original model is slightly modified such that it takes the inflow-outflow of the Tsushima Current into consideration. Results of the model indicate that for sufficiently strong Ekman pumping, the Intermediate Water circulates cyclonically by ventilation. The Intermediate Water subducts beneath the Tsushima Warm Water through the western boundary layer. Off the western boundary layer, it turns northward, outcrops to the north by passing the polar front and continues to flow northward until it finally is absorbed by the northern boundary layer. This result seems to be compatible with some recent observations. Over the ventilated area, the transport of the Tsushima Current is negligible and most transport occurs in the shadow area where the Intermediate layer is motionless indicating that, over the deep motionless layer, the two-layered vertical structure under consideration becomes substantially single-layered.

  • PDF

바닥난방의 쾌적한 온열환경조건에 관한 연구 (A Study on the Optimum Thermal Environmental Conditions in floor Heating)

  • 김봉애
    • 한국주거학회논문집
    • /
    • 제4권2호
    • /
    • pp.55-62
    • /
    • 1993
  • 지금까지 연구해 온 바닥난방이 인체에 미치는 생리적, 심리적 영향에 관한 실험결과를 종합하여(건강한 여자를 피험자로 한 경우) 바닥난방의 Optimum Thermal Environmental Conditions 를 검토할 때는 다음의 조건을 만족시켜야 한다. (1) 저온 화상의 위험성을 고려하여 접촉부위의 피부온도가 $40^{\circ}C$를 넘지 않을 것. (2) 생리적 영향으로써 평균 피부온도가 $33{\;}-{\;}34^{\circ}C$의 범위일 것. (3) 심리적 영향으로써 온냉감 평가가 열적중성(slightly cool - slightly warm)으로 평가하고, 쾌적감 평가가 쾌적한 것으로 평가할 것. (4) 바닥온도에 대한 만족감 평가가 높을 것. (5) 흑구온도는 직접바닥에 앉는 자세에서는 $17^{\circ}C$ 이상, 의자에 앉는 자세에서는 $19^{\circ}C$ 이상일 것. 이상의 조건을 만족시키는 범위가 바닥난방의 Optimum Thermal Environmental Zone (Fig.7) 이라고 생각된다.

  • PDF

여름철 내열성 증진을 위한 정량적 착의훈련의 효과 (제1보) -20대 여성의 적정착의 온도 설정: 의복내 온도를 중심으로- (A Study on Quantitative Wear Training for the Improvement of Heat Tolerance in Summer (Part I) -20's Females' Optimal Wearing: Focus on Inside Clothing Temperatures in Pre-summer-)

  • 이효현;최정화
    • 한국의류학회지
    • /
    • 제36권3호
    • /
    • pp.259-268
    • /
    • 2012
  • This study suggests quantitative guidelines for inside clothing temperatures to improve the heat tolerance of 20's females in summer. First, the inside clothing temperatures ($T_{cl}$) of each subject was measured in daily use. The subjects were asked to record subjective thermal sensations, clothing items worn, clothing weight, and activities during an experiment designed to determine the comfort zone of $T_{cl}$. In a thermally neutral state, the comfort zone of $T_{cl}$ was decided on a mean value $T_{cl}{\pm}1{\sigma}$. Second, the subjects were asked to wear clothing that would enable them to feel 'slightly warm but still comfortable'. The rest of the processes were the same as previous steps that were designed to understand the way and degree of clothing control. The comfort zone of $T_{cl}$ was decided in the same manner as the previous step. The two comfort zones were combined and named the combined comfort zone of the definitive comfort zone. The results were as follows: 1. Thermally comfortable $T_{cl}$, Hcl were $34.0{\pm}1.1^{\circ}C$, $40{\pm}9%%RH$ and the thermally comfortable ambient climate was $25.0{\pm}1.6^{\circ}C$, $53{\pm}7%$RH. 2. When subjects were asked to wear 'slightly warm but still comfortable', there were difference in thermally comfortable $T_{cl}$, clothing weight and clothing layer by subject. 3. In this study, the optimal $T_{cl}$ was decided on the mid-point of the definitive comfort zone of $T_{cl}$.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • 대한인간공학회지
    • /
    • 제36권3호
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-Isothermal Forming Processes for Aluminum Alloy Sheets (Part2 : Theory & Analysis))

  • 금영탁;한병엽
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.710-717
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures for the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis))

  • 금영탁;한병엽
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

AZ31 합금 성형에서의 열전달을 고려한 유한요소해석 (Finite element analysis considering heat transfer in sheet metal forming of AZ31)

  • 김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2005
  • In this work, the influences of tool temperature on the formability of AZ31 sheet material in warm deep drawing processes of square cup were investigated. Deep drawing tests under different tool temperatures for magnesium alloy sheet at elevated temperature $250^{\circ}C$, where AZ31 sheet shows a good formability, and FE analyses were carried out. The successfully formed part without any defects was obtained when temperature of tool was over $100^{\circ}C$ while the fracture was occurred at the corner of the square cup below $100^{\circ}C$. It is shown that lower temperature of tool than that of magnesium sheet causes the temperature drop of the material by heat transfer and thus Interrupts the dynamic recrystallization of it. Therefore, in order to obtain successful part of magnesium alloys, it is necessary that the tool temperature is limited to the same or slightly lower temperature than sheet material.

  • PDF