• 제목/요약/키워드: sliding window technique

검색결과 30건 처리시간 0.029초

오류 학습 문서 제거를 통한 문서 범주화 기법의 성능 향상 (A Text Categorization Method Improved by Removing Noisy Training Documents)

  • 한형동;고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권9호
    • /
    • pp.912-919
    • /
    • 2005
  • 문서 범주화에서 이진 분류를 다중 분류에 적용할 때 일반적으로 '한 범주에 적합-다른 모든 범주에서는 부적합(One-Against-All) 판정 방법'을 사용한다. 하지만, 이러한 '한 범주에 적합-다른 모든 범주에서는 부적합 판정 방법'은 한 가지 문제점을 가지는데, 적합(positive) 집합의 문서들은 사람이 직접범주를 할당한 것이지만 부적합(negative) 집합의 문서들은 사람이 직접 범주를 할당한 것이 아니기 때문에 오류 문서들이 많이 포함될 수 있다는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서 슬라이딩 원도우(sliding window) 기법과 EM 알고리즘을 이진 분류 기반의 문서 범주화에 적용할 것을 제안한다. 제안된 기법은 먼저 슬라이딩 윈도우 기법을 사용하여 오류 문서들을 추출하고 이들을 EM알고리즘을 사용해서 다시 범주를 할당함으로써 이진 분류 기반의 문서 범주화 기법의 성능을 향상시킨다.

확장 참조 구간의 히스토그램 평균값을 이용한 적응적인 장면 전환 검출 기법과 휴대용 멀티미디어 재생기에서의 구현 (Adaptive Shot Change Detection Technique Using Histogram Mean within Extension Sliding Window and Its Implementation on Portable Multimedia Player)

  • 김원희;조경연;김종남
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.23-33
    • /
    • 2009
  • 장면 전환 검출 기술은 대용량 비디오 데이터의 효율적인 관리를 위한 주요 기술로서, 다양한 비디오 데이터에 적용하기 위한 적응적인 검출 알고리즘이 요구된다. 본 논문에서는 확장 참조 구간 동안의 프레임들의 히스토그램 평균값을 이용한 적응적인 장면 전환 검출 알고리즘을 제안한다. 제안하는 방법은 히스토그램을 이용해서 프레임들의 특징값을 계산하고, 확장 참조 구간 동안의 프레임들의 히스토그램 평균값을 이용해서 임계값을 정의하여 특징값과 임계값의 비교를 통해서 장면 전환 발생 여부를 판단한다. 동일한 비디오 데이터를 사용한 실험을 통해서 제안하는 방법이 기존의 방법들보다 검출 정확도에서 최대 15% 이상 향상되었음을 확인하였다. Homecast사의 TVUS HM-900 PLUS 모델의 휴대용 멀티미디어 재생기에서 제안하는 방법을 구현하여 PC보다 성능이 낮은 하드웨어 플랫폼에서도 실시간으로 장면 전환 검출이 동작하는 것을 확인하였다. 본 논문에서 제안하는 방법은 휴대용 미디어 재생 장치나 휴대 전화 등 비교적 낮은 하드웨어 플랫폼에서 유용하게 사용될 수 있다.

개방 데이터 마이닝에 효율적인 이동 윈도우 기법 (A Sliding Window Technique for Open Data Mining over Data Streams)

  • 장중혁;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권3호
    • /
    • pp.335-344
    • /
    • 2005
  • 근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보들은 시간 흐름에 따른 변화의 가능성이 매우 높다. 따라서, 이러한 변화를 빠른 시간에 분석할 수 있다면 해당 데이터 스트림에 대한 분석에서 보다 유용한 정보를 제공할 수 있다. 본 논문에서는 개방 데이터 마이닝 환경에서 효율적인 최근 빈발 항목 탐색을 위한 이동 윈도우 기법을 제시한다. 해당 기법에서는 데이터 스트림이 지속적으로 확장되더라도 지연 추가 및 전지 작업을 적용하여 마이닝 수행과정에서의 메모리 사용량이 매우 작게 유지되며, 분석 대상 범위의 데이터 객체들을 반복적으로 탐색하지 않기 때문에 각 시점에서 마이닝 결과를 짧은 시간에 구할 수 있다. 더불어, 해당 방법은 데이터 스트림의 최근 정보에 집중한 분석을 통해 해당 데이터 집합의 변화를 효율적으로 감지할 수 있다.

A Fall Detection Technique using Features from Multiple Sliding Windows

  • Pant, Sudarshan;Kim, Jinsoo;Lee, Sangdon
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.79-89
    • /
    • 2018
  • In recent years, falls among elderly people have gained serious attention as a major cause of injuries. Falls often lead to fatal consequences due to lack of prompt response and rescue. Therefore, a more accurate fall detection system and an effective feature extraction technique are required to prevent and reduce the risk of such incidents. In this paper, we proposed an efficient feature extraction technique based on multiple sliding windows and validated it through a series of experiments using supervised learning algorithms. The experiments were conducted using the public datasets obtained from tri-axial accelerometers. The results depicted that extraction of the feature from adjacent sliding windows led to high accuracy in supervised machine learning-based fall detection. Also, the experiments conducted in this study suggested that the best accuracy can be achieved by keeping the window size as small as 2 seconds. With the kNN classifier and dataset from wearable sensors, the experiments achieved accuracy rates of 94%.

데이타 스트림 상에서 다중 연속 복수 조인 질의 처리 최적화 기법 (MMJoin: An Optimization Technique for Multiple Continuous MJoins over Data Streams)

  • 변창우;이헌주;박석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권1호
    • /
    • pp.1-16
    • /
    • 2008
  • 센서 네트워크에 이용되는 데이타 스트림 관리 시스템에서는 한정적 정보들이 개별적으로 입력되기 때문에 종합적인 결과를 얻기 위해서는 상대적인 계산 비용이 높은 조인 연산자는 필연적으로 요구된다. 데이타 스트림은 잠재적으로 무한한 크기를 가지므로 조인 연산자는 슬라이딩 윈도우 제약사항을 가져야 함은 당연하다. 또한, 종합적인 결과를 얻기 위해 조인 연산자는 여러 입력을 취할 수 있어야 한다. 이를 가능하게 하는 것이 바로 슬라이딩 윈도우를 가지는 MJoin 연산자이다. 본 논문에서는 이러한 여러 MJoin 연산자가 시스템에 등록되어 있는 환경을 가정하고, 슬라이딩 윈도우를 가지는 MJoin의 특성을 반영하여 전역적으로 공유된 질의 처리 기법인 MMJoin 기법을 제안한다. MMJoin 기법은 첫째, 전역적으로 공유된 질의 실행 계획 수릴 문제, 조인 연산 결과에 대한 윈도우 갱신 문제 및 라우팅 문제로 나누어 다룬다. 이러한 연구의 노력은 데이타 스트림 환경에서 효율적인 다중 질의 최적화 및 처리 기법의 기초연구로 활용될 수 있다.

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례 (LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction)

  • 이현상;오세환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권1호
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구 (Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques)

  • 박경선;김강석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.449-456
    • /
    • 2021
  • 침입 탐지 시스템(IDS: Intrusion Detection System)은 보안을 침해하는 이상 행위를 탐지하는 기술로서 비정상적인 조작을 탐지하고 시스템 공격을 방지한다. 기존의 침입탐지 시스템은 트래픽 패턴을 통계 기반으로 분석하여 설계하였다. 그러나 급속도로 성장하는 기술에 의해 현대의 시스템은 다양한 트래픽을 생성하기 때문에 기존의 방법은 한계점이 명확해졌다. 이런 한계점을 극복하기 위해 다양한 기계학습 기법을 적용한 침입탐지 방법의 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 네트워크 환경의 트래픽을 시뮬레이션 장비에서 생성한 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 이상(Anomaly) 탐지 정확도를 높일 수 있는 데이터 전처리 기법에 관한 비교 연구를 진행하였다. 데이터 전처리로 패딩(Padding)과 슬라이딩 윈도우(Sliding Window)를 사용하였고, 정상 데이터 비율과 이상 데이터 비율의 불균형 문제를 해결하기 위해 AAE(Adversarial Auto-Encoder)를 적용한 오버샘플링 기법 등을 적용하였다. 또한, 전처리된 시퀀스 데이터의 특징벡터를 추출할 수 있는 Word2Vec 기법 중 Skip-gram을 이용하여 탐지 정확도의 성능 향상을 확인하였다. 비교실험을 위한 모델로는 PCA-SVM과 GRU를 사용하였고, 실험 결과는 슬라이딩 윈도우, Skip-gram, AAE, GRU를 적용하였을 때, 더 좋은 성능을 보였다.

Unsupervised Image Classification for Large Remotely-sensed Imagery using Regiongrowing Segmentation

  • Lee, Sang-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.188-190
    • /
    • 2006
  • A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The local segmentor of the first stage performs regiongrowing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. This stage uses a sliding window strategy with boundary blocking to alleviate a computational problem in computer memory for an enormous data. The global segmentor of the second stage has not spatial constraints for merging to classify the segments resulting from the previous stage. The experimental results show that the new approach proposed in this study efficiently performs the segmentation for the images of very large size and an extensive number of bands

  • PDF

Hierarchical Graph Based Segmentation and Consensus based Human Tracking Technique

  • Ramachandra, Sunitha Madasi;Jayanna, Haradagere Siddaramaiah;Ramegowda, Ramegowda
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.67-90
    • /
    • 2019
  • Accurate detection, tracking and analysis of human movement using robots and other visual surveillance systems is still a challenge. Efforts are on to make the system robust against constraints such as variation in shape, size, pose and occlusion. Traditional methods of detection used the sliding window approach which involved scanning of various sizes of windows across an image. This paper concentrates on employing a state-of-the-art, hierarchical graph based method for segmentation. It has two stages: part level segmentation for color-consistent segments and object level segmentation for category-consistent regions. The tracking phase is achieved by employing SIFT keypoint descriptor based technique in a combined matching and tracking scheme with validation phase. Localization of human region in each frame is performed by keypoints by casting votes for the center of the human detected region. As it is difficult to avoid incorrect keypoints, a consensus-based framework is used to detect voting behavior. The designed methodology is tested on the video sequences having 3 to 4 persons.