• Title/Summary/Keyword: sliding wear behavior

Search Result 234, Processing Time 0.026 seconds

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.

A Study of Unlubricated Sliding wear of materials as hardness difference (경도의 차이에 따른 재료들의 비윤활 미끄럼 마모에 대한 연구)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.369-376
    • /
    • 2004
  • It is shown that the rate of wear can be related to on 'index of wear intensity'. Since both upper and lower specimens have used the same hardness values, equivalent hardness of 'index of wear intensity' used the mean hardness value of specimens. This index is derived from the external variables of load, sliding speed and the hardness of the sliding pairs. The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a disc on disc configuration. The materials of the specimens are used as ten kinds along their hardness. Using experimental data, we figured the relationship between wea rate and index of wear intensity. The result had been derived a newly wear equation in disc on disc wear system.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Sliding Wear Behavior of $Al_2O_3/NiCr$ Coating ($Al_2O_3/NiCr$ 코팅의 미끄럼 마멸 특성)

  • Chae, Young-Hun;Park, Byung-Hee;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1245-1252
    • /
    • 1999
  • The sliding wear behavior of $Al_2O_3/NiCr$ coating deposited on steel(SM45C) was investigated under lubrication. The parameters of sliding wear are normal loads, coating thickness. As a result, the wear resistance of $Al_2O_3/NiCr$ coating was remarkably greater than that of $Al_2O_3$ coating. The optimized coating thickness was found to be $300{\mu}m$ to ensure good anti-wear. The bond coating played important role in decreasing residual stress. The residual stress had much influence on wear mechanism. These results were correlated with the stress state of coating and the microstructure of coating.

Sliding Wear Behavior of Plasma-Sprayed $Al_2$O$_3$-TiO$_2$ Coating against Cemented Carbide (Al$_2$O$_3$-TiO$_2$ 플라즈마 세라믹 코팅과 초경합금간의 미끄럼 마멸특성)

  • 이병섭;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.313-318
    • /
    • 2001
  • The sliding wear behavior of Plasma-Sprayed Al$_2$O$_3$-TiO$_2$ Coating against Cemented Carbide were Investigated using a pin on disk type tester. The experiment was conducted using Al$_2$O$_3$-TiO$_2$ Coaling as pin material and Cemented Carbide as disk material and different operating conditions, at room temperature under a dry conditions. The results showed that the type B(250kw power) appeared average wear rate Is lowed than type A(80kw power). The specific wear rate of Specimen A1 Increased with normal load. But The specific wear rate of Specimen B1 decreased with normal load. Average wear rate of specimen A3, B3 are lowed than other but the sliding wear mechanism of edge were rough.

  • PDF

Relationship between Spring Shapes and the Ratio of wear Volume to the Worn Area in Nuclear Fuel Fretting

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Sliding and impact/sliding wear test in room temperature air and water were performed to evaluate the effect of spring shapes on the wear mechanism of a fuel rod. The main focus was to quantitatively compare the wear behavior of a fuel rod with different support springs (i.e. two concaves, a convex and a flat shape) using a ratio of wear volume to worn area (De)-The results indicated that the wear volumes at each spring condition were varied with the change of test environment and loading type. However, the relationship between the wear volume and worn area was determined by only spring shape even though the wear tests were carried out at different test conditions. From the above results, the optimized spring shape which has more wear-resistant could be determined using the analysis results of the relation between the variation of De and worn surface observations in each test condition.

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF