• Title/Summary/Keyword: sliding wear and friction

Search Result 374, Processing Time 0.026 seconds

A Study of Sliding Friction and Wear Properties for Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 소결청동의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young;Ikenaga, Akira
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • [ $MoS_2$ ], is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2$ limited its wide application. This study is aimed to investigate the possibility far application to solid lubricants for $Cu_2S$ as a substitute of $MoS_2$. Bronzes added $Cu_2S$ and $MoS_2$, are produced by powder metallurgy in this study, and then evaluated their friction and wear properties., as well as sintered bronze. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces sintered bronzes added $Cu_2S$ and $MoS_2$, and sintered bronze without lubricants. Addition of $Cu_2S$ to bronze leads to relatively good friction properties, although it is not so good as addition of $MoS_2$. However, the wear properies of sintered bronze added $Cu_2S$ are better than that of sintered bronze added $MoS_2$.

Effect of Stress History on Friction and Wear of Metals in Dry and Boundary Lubricated Conditions (건조 및 경계윤활 조건에서 응력이력에 따른 금속재료의 마찰 마멸 특성)

  • 황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.93-98
    • /
    • 1996
  • Friction and wear characteristics of metals in dry and boundary lubricated sliding conditions are observed experimentally using pin-on-disk and pin-on-plate type tribotesters. The motivation of this research is to investigate the effect of sliding history on the tribological behavior of metals. Cu and SM45C steel materials were used for the experiment. The results show that in dry condition the fictional behavior as well as wear of the specimens differed between uni-directional and bi-directional sliding conditions. The friction coefficient values, wear profile and optical micrograph of the wear track are presented.

  • PDF

Analysis of Sliding Friction and Wear Properties of Clutch Facing for Automobile (Part 2) (자동차용 클러치 마찰재의 미끄럼마찰마모특성 해석(제2보 마찰특성))

  • Lee Han-young;Kim Geon-young;Hur Man-Dae
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2005
  • In previous paper, the wear properties of clutch facing materials with two different copper amounts against fly-wheel materials used in the clutch system were investigated by sliding wear tests at different applied loads and speeds. This paper have been aimed to evaluate the friction properties for clutch facing materials at the same test conditions as the previous paper. The experimental results indicated that the friction properties of clutch facing materials are influenced from the thermal conductivities of the clutch facing material and the counter material. The clutch facing material with the lower thermal conductivity and the fly-wheel material with the higher thermal conductivity showed the low and stable friction coefficient in the range of high sliding speed. This appears to be due to the formation of a film on the surface of the fly-wheel material.

Reciprocating Sliding Wear of Nylon and Polyacetal Against Steel (나일론과 폴리아세탈의 왕복동 마찰마멸특성에 관한 고찰)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.786-793
    • /
    • 2000
  • Nylon, Polyacetal and PTFE were studied to gain a better understanding of their tribological behavior. Wear tests were conducted with reciprocating motion under dry sliding conditions. Friction coefficient and specific wear rate were measured as a function of sliding distance. The worn surfaces were examined with a Scanning Electron Microscope(SEM). Polyacetal showed lowest specific wear rates and PTFE exhibited lowest friction coefficient. The dominant wear mechanism found were adhesion and abrasion.

Friction and Wear Characteristics of Automotive Friction Materials Containing Different Relative Amounts of Solid Lubricants(Graphite, MoS$_2$and $_2$S$_3$) (고체윤활제(Graphite, MoS$_2$, Sb$_2$S$_3$)의 상대량에 따른 마찰재의 마찰 및 마모특성에 관한 연구)

  • Choi, Nak-Cheon;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.219-224
    • /
    • 1999
  • The effects of solid lubricants on wear and friction characteristics of friction materials were studied using a pad-on-disk type friction tester. Friction materials with ten formulations containing different relative amounts of solid lubricants(graphite, MoS$_2$and Sb$_2$S$_3$) were investigated. Results of this work showed that each formulation with different relative amounts of the lubricants had unique friction characteristics. At low brake temperatures, friction materials containing rich graphite showed a small amount of $\mu$ change during sliding. At elevated temperatures, on the other hand, friction materials with rich Sb$_2$S$_3$and graphite showed smaller $\mu$ changes suggesting complementary lubrication of Sb$_2$S$_3$and graphite during sliding. However, the friction materials with rich Sb$_2$S$_3$showed a large amount of wear.

  • PDF

A Study on the Friction and Wear Property of Composite Piston Ring for Oil Free Air Compressor (무급유 공기압축기용 복합재료 피스턴링의 마찰마모 특성에 관한 연구)

  • Kim, Y.Z.;Jung, H.D.;Kim, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.766-771
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest men friction coefficient and specific wear rate at 0.94m/s sliding speed. At each of carbon, copper and oxide lopper mixed with PTFE80%-polyimide20%. In case of copper10%, at 0.94m/s sliding speed, the mean friction coefficient shows 0.087, which is the lowest value in all specimens. In case of the specific wear rate, copper30% specimen shows the lowest value of $2.537E-5(mm^3/Nm)$ in all specimens.

  • PDF

Sliding Wear and Friction Properties of Composite Materials for Friction Bushing (Friction Bushing용 복합재료의 미끄럼 마찰마모특성에 관한 연구)

  • Lee Han-Young;Heo Dae-Hong;Kim Tae-Jun;Cho Yong-Jae;Cho Bum-Rae;Hur Man-Dae
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The sliding friction and wear properties of mineral fiber reinforced composite(MF) and glass fiber reinforced composites(GF) are investigated to clarify their field of use and the role of each fiber in friction material. Friction and wear test reveals that GF composite has better wear resistance even though with low friction coefficient, comparing with MF composite. Glass fiber strengthen effectively the matrix and may absorb friction energy to convert it into the fracture energy of them, as well as its lubricative role. However, mineral fiber in MF composite is too small to strengthen the matrix. Then MF composite are easily plowed and worn out by asperity on counter material. Friction coefficient of MF composite is higher friction coefficient than that of GF composite and varied widely with test.

Effect of Counterpart Roughness on Abrasive Wear Characteristics of Side Plate of FRP Ship (FRP 선박 외판재의 연삭마모 특성에 관한 상대재 거칠기의 영향)

  • Kim, Hyung-Jin;Koh, Sung-Wi;Kim, Jae-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.35-40
    • /
    • 2008
  • The effect of counterpart roughness on abrasive wear characteristics of side plate materials of FRP ship, which were composed of glass fiber and unsaturated polyester resin composites, were investigated at ambient temperature by pin-an-disc friction test. The friction coefficient, wear rate and cumulative wear volume of these materials against SiC abrasive paper were determined experimentally. The wear rate of these materials decreased rapidly with sliding distance and then maintained a constant value. It was increased as counterpart roughness was rougher in a wear test. The cumulative wear volume tended to increase nonlinearly with sliding distance and depended on applied load and sliding speed for these composites. It could be verified by SEM photograph of fracture surface that major failure mechanisms were overlapping layers, microcutting, deformation of resin, delamination, and cracking.

Friction and wear characteristics during sliding of ${ZrO}_{2}, {Si}_{3}{N}_{4}$ and SiC with SiC, AISI 4340 and bronze under dry and lubricated condition (세라믹 ${ZrO}_{2}, {Si}_{3}{N}_{4}$ 및 SiC를 SiC, AISI 4340 및 청동으로 윤활 및 건조조건에서 미끄름시험하였을 때의 마찰 및 마멸 거동)

  • 강석춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.404-410
    • /
    • 1989
  • Friction and wear tests were conducted with several different ceramics sliding against ceramic and metal couples with and without lubricant in a two disk type sliding machine. The purpose was to know the tribological properties of ceramics. With very different physical and chemical properties of ceramics compared to metal, the tribological properties of ceramics should be defined in detail. Among them, the wear and friction with same or different couple is very important. Also the lubrication of ceramic is one of the major area to be studied. From this research, SiC, SI$_{3}$N$_{4}$ and ZrO$_{2}$ were slid against SiC, AISI 4340 and bronze under various sliding condition. It was found that the friction and wear of ceramics are strongly dependent on the sliding condition. For unlubricated sliding against SiC, ZrO$_{2}$ shows low wear and friction coefficient over wide lange of load, but with lubricated sliding, SiC shows better performance whatever lubricants were used. Also the effect of lubricant depended upon the material properties of sliding pairs. The general tribological properties of ceramics were not correlated with chattering and noise at low load but it could be reduced or avoided effectively by using lubricants. SiC and Si$_{3}$N$_{4}$ slid against SiC have transition from mild to severe wear at high load but ZrO$_{2}$-SiC and SiC-steel have not. Wear debris formed on the contact area of SiC couples was main cause of the initiation of transition. At high speed, only ZrO$_{2}$ sliding against SiC has transition of wear by low thermal conductivity.

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.