• Title/Summary/Keyword: sliding test

Search Result 655, Processing Time 0.038 seconds

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

Friction and Lubrication Behaviors of Rabbit Joint Cartilage (토끼 관절연골의 마찰 및 윤활 특성)

  • 이권용;이홍철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.42-47
    • /
    • 2000
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

  • PDF

A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition (과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Lee, Seung-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

Development of an Intelligent Autonomous Control Algorithm and Test Vehicle Performance Verification (지능형 자율주행 제어 알고리즘 개발 및 시험차량 성능평가)

  • Kim, Won-Gun;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.861-866
    • /
    • 2007
  • This paper presents development of a vehicle lateral and longitudinal control for autonomous driving control and test results obtained using an electric vehicle. Sliding control theory has been used to develop a vehicle speed and distance control algorithm. The longitudinal control algorithm that maintains safety and comfort of the vehicle consists of a cruise and STOP&GO control depending on traffic conditions. Desired steering angle is determined through the lateral position error and the yaw angle error based on preview optimal control. Motor control inputs have been directly derived from the sliding control law. The performance of the autonomous driving control which is integrated with a lateral and longitudinal control is investigated by computer simulations and driving test using an electric vehicle. Electric vehicle system consists of DC driving motor, an electric power steering system, main controller (Autobox)

  • PDF

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

Friction Characteristics of Non-Asbestos Organic (NAO) and Low-Steel Friction Materials: The Comparative Study

  • Kim, Seoun Jin;Jang, Ho
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Eviction characteristics of two typical friction materials (non-asbestos organic and low-steel friction materials) for an automotive brake system were investigated using an inertial brake dynamometer. In particular, the effect of sliding speed on friction coefficient was carefully investigated employing various test modes. The two friction materials were developed for commercial applications and were different mainly in the type and the amount of metallic ingredients in the friction material. The dynamometer test showed that the low-steel friction material was sensitive to the sliding speed exhibiting a negative $\mu$-v relation. On the other hand, the non-asbestos organic friction material was less sensitive to the sliding speed. The low steel friction materials with a negative $\mu$-v relation also induced larger vibration amplitude during brake applications.

  • PDF

Simulation for Initial Motion of a Test Vehicle Launched from Sliding Launcher (활강 진수대에서 운용되는 시험용 운동체의 초기 거동 모사)

  • Yepmg-Il Park;Chan-Ki Kim;Sun-Hong Kwon;Man-Hyung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.29-39
    • /
    • 1999
  • In this study, mathematical modelling for initial motion of test vehicle launched from sliding launcher is performed, and simulation results from this mathematical models are verified by comparing them with sea trial results. Especially, it is showed that models using strip method give better results than using empirical formulae and linear equations of motion. This mathematical model can give useful tools to design sliding launchers or test vehicles.

  • PDF

Friction and Lubrication Behaviors of Rabbit Joint Cartilage (토끼 관절연골의 마찰 및 윤활 특성)

  • 이권용;이홍철
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.307-311
    • /
    • 2001
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature (크롬탄화물 용사피막의 고온마모 특성연구)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF

A Study of Sliding Friction and Wear Properties of Bronze added $Cu_2S$ as Solid Lubricants (고체윤활제 $Cu_2S$첨가 청동의 미끄럼 마찰마모특성 연구)

  • Lee Hanyoung;Kim Taejun;Cho Yongjae
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.60-65
    • /
    • 2004
  • [ $MoS_2S$ ] is a well-known metal sulfide applied as solid lubricants and an additive to prolong the life of sintered bearings under severe conditions. However, the high price of $MoS_2S$ limited its wide application. This study is aimed to investigated the possibility for application to solid lubricants for $Cu_2S$ as a substitute of v. Bronzes added $Cu_2S$ and $MoS_2S$ are produced by powder metallurgy in this study, and then evaluated their friction and wear properties. The sliding wear test using pin-on-disc type machine, was conducted at several sliding speeds for three type test pieces, bronze and bronzes added $Cu_2S/MoS_2$. Addition of $Cu_2S$ to bronze leads to relatively good friction and wear properties, although it is not so good as addition of $MoS_2S$. But the properties of bronze added $Cu_2S/MoS_2$ would be not suitable for the condition under the high sliding speed.

  • PDF