• Title/Summary/Keyword: sliding test

Search Result 656, Processing Time 0.021 seconds

Design and Evaluation of AFS and ARS Controllers with Sliding Mode Control and Fuzzy Logic Control Method (Sliding Mode Control 및 Fuzzy Logic Control 방법을 이용한 AFS 및 ARS 제어기 설계 및 성능 평가)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.72-80
    • /
    • 2013
  • This study is to develop and evaluate an AFS and an ARS controllers to enhance lateral stability of a vehicle. A sliding mode control (SMC) and a fuzzy logic control (FLC) methods are applied to calculate the desired additional steering angle of AFS equipped vehicle or desired rear steer angle of ARS equipped vehicle. To validate AFS and ARS systems, an eight degree of freedom, nonlinear vehicle model and an ABS controllers are also used. Several road conditions are used to test the performances. The results showed that the yaw rate of the AFS and the ARS vehicle followed the reference yaw rate very well within the adhesion limit. However, the AFS improves the lateral stability near the limit compared with the ARS. Because the SMC and the FLC show similar vehicle responses, performance discrimination is small. On split-${\mu}$ road, the AFS and the ARS vehicle had enhanced the lateral stability.

Control of Hydraulic Excavator Using Self Tuning Fuzzy Sliding Mode Control (자기 동조형 퍼지 슬라이딩 모드 제어를 이용한 유압 굴삭기의 제어)

  • Kim Dongsik;Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, to overcome drawbacks of FLC a self tuning fuzzy sliding mode controller is proposed, which controls the position of excavator's attachment, which can be regarded as an ill-defined system. It is reported that fuzzy logic theory is especially useful in the control of ill-defined system. It is important in the design of a FLC to derive control rules in which the system's dynamic characteristics are taken into account. Control rules are usually established using trial and error methods. However, in the case where the dynamic characteristics vary with operating conditions, as in the operation of excavator attachment, it is difficult to find out control rules in which all the working condition parameters are considered. Experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator. The experimental results show that both alleviation of chattering and performance are achieved. Fuzzy rules are easily obtained by using the proposed method and good performance in the following the desired trajectory is achieved. In summary, the proposed controller is very effective control method for the position control of the excavator's attachment.

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.

A Study on the Tribological Characteristics of PTFE Composites-filled with Nano CuO Particles Under a Slow Sliding Speed and Low Load Condition (나노 CuO입자로 충진된 PTFE 나노복합소재의 저속 및 하중 조건에서의 트라이볼로지 특성에 관한 연구)

  • Minhaeng Cho;Junghwan Kim
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.111-117
    • /
    • 2023
  • This paper presents an experimental investigation of the tribological characteristics of PTFE composites filled with nano CuO particles under low sliding speed and load. All the specimens were prepared by sintering. Before sintering, the mixture of PTFE powder and CuO particles were mixed by a high-speed mixer using CuO volume fractions of 0.2 vol. % and 5 vol. %. Each mixture was sintered at 350 ℃ for 30 min on the steel disk. We conducted ball-on-disk sliding test an hour using a steel ball against PTFE composites, including pure PTFE. The load and sliding speed used was 2 N and 0.01 m/s, respectively. Adding nano CuO particles increases the friction coefficient because of the abrasiveness of hard nano CuO particles. The highest coefficient of frictions was obtained from 5 vol. % CuO. Conversely, the lowest wear of the composites was obtained from the 5 vol. % CuO nanocomposite. This study reveals that the addition of nano CuO particles can lower the wear of PTFE, despite an increase in the coefficient of friction. However, the coefficient friction is still moderate compared to other engineering polymers. In addition, the amount of CuO nano particles has to be optimized to reduce friction and wear at the same time.

Effect of Lubricant with Nanodiamond Particles in Sliding Friction

  • Adzaman, M.H.;Rahman, A.;Lee, Y.Z.;Kim, S.S.
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.183-188
    • /
    • 2015
  • This paper presents the experimental effects of lubricant with nanodiamond particles in sliding friction. In order to improve the performance of lubricants many additives are used, such as MoS2, cadmium chloride, indium, sulfides, and phosphides. These additives are harmful to human health and to the environment, so alternatives are necessary. One such alternative is nanodiamond powder, which has a large surface area. In order to investigate the effect of nanodiamonds in lubricants under sliding friction, they are dispersed in the lubricant at a variety of concentrations (0 wt%, 0.1 wt%, 0.3 wt%, 0.5 wt%, and 1 wt%) using the matrix synthesis method. Friction and wear tests are performed according to the ASTM G99 method using a pin-on-disc tester at room temperature. The specimens used in this experiment are AISI 52100 ball bearings and AISI 1020 steel discs. During the test, lubricant mixed with nanodiamond is supplied constantly to keep the two bodies separated by a lubricant film. To maintain boundary lubrication, the speed is set to 0.18 m/s and a load of 294 N is applied to the disc through the pin. Results are recorded by using workbench software over the test duration of 10 minutes. Experimental results show that when the concentration of nanodiamond increases, the coefficient of friction decreases. However, above a nanodiamond concentration of 0.5 wt%, both the coefficient of friction and wear volume increase. From this experiment, the optimum concentration of nanodiamond showing a minimum coefficient of friction of 0.09 and minimum wear volume of 0.82 nm2 was 0.5 wt%.

Nanocrystalline Diamond Coated SiC Balls in Tribometer (나노결정질 다이아몬드가 코팅된 SiC 마모시험기 볼)

  • Im, Jong Hwan;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.263-268
    • /
    • 2014
  • Nanocrystalline diamond(NCD) coated SiC balls were applied in a ball-on-disk tribometer. After seeding in an ultrasonic bath containing nanometer diamond powders, $2.2{\mu}m$ thick NCD films were deposited on sintered 3 mm diameter SiC balls at $600^{\circ}C$ in a 2.45 GHz microwave plasma CVD system. Bare $ZrO_2$ and SiC balls were prepared for comparison as test balls. Tribology tests were performed in air with pairs of three different balls and mirror polished steel(SKH51) disk. The wear tracks on balls and disks were examined by optical microscope and alpha step profiler. Under the load of 3 N, the friction coefficients of steel against $ZrO_2$, SiC and NCD-coated balls were between 0.4 and 0.8. After a few thousands sliding laps, the friction coefficient of NCD-coated balls dropped from 0.45 to below 0.1 and maintained thereafter. Under a higher load of 10 N or 20 N with a long sliding distance of 2 km, $ZrO_2$ and SiC balls exhibited the similar friction coefficients as above. The friction coefficient of NCD-coated balls was less than 0.1 from the beginning and increased to above 0.1 steadily or with some fluctuations as sliding distance increased. NCD coating layers were found worn out after long duration and/or high load sliding test, which resulted in the friction coefficient higher than 0.1.

Interpretational Consideration of Geosynthetics Shear Behaviors (지오신세틱스 전단거동의 해석학적 고찰)

  • Jeon, Han-Yong;Kim, Cho-Rong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.293-302
    • /
    • 2010
  • 2 types of geogrids and geotextiles was used to evaluate shear behaviors after installation damage test. Shear behaviors were compared after installation damage test and coefficient of resistance to direct sliding($f_{ds}$) was estimated by theoretical shear analysis. Shear strength of damaged geogrid decreased under high normal stress of 150kPa and shear strength of geotextile decreased with increasing normal stress. It is seen that $f_{ds}$ values after installation damage decreased than before installation damage through comparison calculated $f_{ds}$ by direct theoretical shear analysis. $f_{ds}$ values to be calculated by theoretical shear analysis were changed with before and after installation damage.

  • PDF

The Evaluation on Wear Characteristics of the Crane Sheave (크레인용 시브 강재의 마멸특성 평가)

  • Park Yongjae;Ryu Jungbuk;Kim Seocksam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.306-311
    • /
    • 2004
  • The sliding wear characteristics of the crane sheave were investigated using a pin-on-disk rig tester The experiment was conducted using a high carbon steel wire that was upper material, also carbon steel castings and carbon steel for machine structural use that was disk material. There are various operating conditions in this work. At the room temperature, we carried out the wear test under a grease lubrication. The results of wear test showed that carbon steel for machine structural use have lower wear volume, also the wear curves are linearly increased with increasing of sliding velocity The wear mechanism of a disk is the abrasive, adhesion, and fatigue wear under lubrication.

  • PDF

Analysis of Wear Debris on the Lubricated Machine Surface by the Neural Network (Neural Network에 의한 기계윤활면의 마멸분 해석)

  • 박흥식
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.24-30
    • /
    • 1995
  • This paper was undertaken to recognize the pattern of the wear debris by neural network as a link for the development of diagnosis system for movable condition of the lubricated machine surface. The wear test was carried out under different experimental conditions using the wear test device was made in laboratory and wear testing specimen of the pin-on-disk type were rubbed in paraffine series base oil, by varying applied load, sliding distance and mating material. The neural network has been used to pattern recognition of four parameter (diameter, elongation, complex and contrast) of the wear debris and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by the neural network. The characteristic parameter of the large wear debris over a few micron size enlarged recognition ability.

Tribological Characteristics for High Perfomance Metallic Friction Materials (고성능 금속마찰재의 트라이볼로지적 특성)

  • 김석삼;김재호;안효준
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Friction and wear test for two kinds of Cu-based sintered metallic friction material against cast iron disk was carried out by plate-on-disk type friction and wear tester to investigate the friction and wear characteristics of brake system in severe condition. In this experimental study, the counter specimen was cast iron which is being used generally in brakes of heavy duty equipments. Test friction materials were A type which was manufactured by foreign company and B type by domestic company. Friction coefficient and wear volume were measured and compared with each other. The experiment was performed under room temperature. The worn surface of cast iron disk and friction material were observed by scanning electron microscope. The temperature of surface of disk was measured continuously by the non-contacting thermometer. It was found that A type friction material had stable friction coefficient over the wide range of sliding condition, but B type friction material had unstable friction coefficient and lower value of 0.2 under the severe sliding condition.