• 제목/요약/키워드: sliding mode flux observer

검색결과 33건 처리시간 0.028초

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

슬라이딩모드 적응 자속관측기를 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑제어 (Adaptive Backstepping Control of Induction Motors with Uncertainties Using a Sliding Mode Adaptive flux Observer)

  • 이은욱;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.154-160
    • /
    • 2004
  • In this paper, a combined field orientation and adaptive backstepping approach using a sliding mode adaptive flux observer, is proposed for the control of induction motor In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer based on a fixed stator frame model and mechanical lumped uncertainty such as inertia moment, load torque disturbance, friction compensated by the adaptive backstepping based on a field-oriented model. Simulation results are provided to verify the effectiveness of the proposed approach.

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

슬라이딩 모드 관측기에 의한 유도전동기 센서리스 벡터제어 (Sensorless Indirect Vector Control of Induction Motor using Sliding Mode Observer)

  • 신종렬;권순만;이종무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.340-342
    • /
    • 2005
  • This paper describes the speed-sensorless vector control system of a three-phase induction motor using sliding mode flux/speed observer. The sliding mode observer estimates the rotor speed. The error between the actual and observed currents converges to zero which guarantees the accuracy of the flux observer. The convergence of nonlinear time-varying observer along with the asymptotic stability of the controller was analyzed. To define the control action which maintains the motion on the sliding manifold, an "equivalent control" concept was used. It was simulated and implemented on a sensorless indirect vector drive for 750[W] three-phase induction motor. The simulation and experimental results demonstrated the effectiveness of the proposed estimation method.

  • PDF

적응 슬라이딩모드 자속 관측기를 이용한 인덕션 모터의 슬라이딩 모드 제어 (Sliding Mode Control of Induction Motors Using an Adaptive Sliding Mode Flux Observer)

  • 김도우;정기철;이승학
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권10호
    • /
    • pp.587-594
    • /
    • 2005
  • An adaptive observer for rotor resistance is designed to estimate rotor flux for the a-b model of an induction motor assuming that rotor speed and stator currents are measurable. A singularly perturbed model of the motor is used to design an Adaptive sliding mode observer which drives the estimated stator currents to their true values in the fast time scale. The adaptive observer on the sliding surface is based on the equivalent switching vector and both the estimated fluxes and the estimated rotor resistance converge to their true values. A speed controller considering the effects of parameter variations and external disturbance is proposed in this paper. First, induction motor dynamic model at nominal case is estimated. based on the estimated model, speed controller is designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a robust controller are designed to reduce the effects of parameter variations and external disturbances. the desired speed tracking control performance can be preserved under wide operating range, and good speed load regulating performance. Some simulated results are provided to demonstrate the effectiveness of the Proposed controller.

A Sliding Mode Observer Design for Fuel Cell Electric Vehicles

  • Park In-Duck;Kim Si-Kyung
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.172-177
    • /
    • 2006
  • This paper presents the sliding mode observer of an induction motor for the fuel cell electric vehicles. The exact rotor flux estimation of the induction motor is important for achieving the best performance from the fuel cell electric vehicle system. However, the flux estimator of the induction motor control is highly sensitive to the voltage sensor output characteristics and system parameter variation influenced by external factors. In order to eliminate these problems, this paper investigates the electric vehicle performance due to parameter variation of the induction motor. A new method to estimate the fuel cell electric vehicle system is proposed based on the sliding mode observer.

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화 (Efficiency Optimization with Sliding Mode Observer for Induction Motor)

  • 이선영;박기광;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

유도전동기의 효율 최적화를 위한 강인 적응제어 (Robust Adaptive Control for Efficiency Optimization of Induction Motors)

  • 황영호;박기광;김홍필;한홍석;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF