• Title/Summary/Keyword: sliding mode controller

Search Result 931, Processing Time 0.031 seconds

Design of a Integral Sliding Mode Speed Controller having Chattering Alleviation Characteristics for the Sinusoidal type Brushless DC Motor (채터링 저감특성을 갖는 정현파형 브러시리스 직류전동기 (BLDC Motor)의 적분 슬라이딩 모드 속도제어기 설계)

  • Kim, Sei-Il;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.1-11
    • /
    • 2001
  • In this paper, a chattering alleviation VSS controller for the sinusoidal type BLDC motor is designed. Dead Zone function is proposed to change the chattering occurring in the transient state from high frequency to low frequency and time varying gains arc applied for the control input to eliminate the steady state excessive chattering in the conventional ISM. The proposed Dead Zone function represents the sliding layer composed of two switching surfaces and if a state vector exists in this layer, the chattering don't occur. Simulation and experimental results confirm the useful effects of the above algorithm.

  • PDF

A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels (Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구)

  • Bui, Van-Phuoc;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

Design of an Adaptive Fuzzy VSC for BLDC Motor Position Control (적응 퍼지 가변구조 알고리듬을 사용한 전동기 위치제어기 설계)

  • Park, Kwang-Hyun;Lee, Hun;Lee, Dae-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The main property of VSC is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode if their bounds are known to the designer of the system control. But sometimes these bounds may not be easily obtained. However, fuzzy control provides an effective way to design the controller of the system with the disturbances and parameter variations. Therefore, combination of the best feature of fuzzy control and sliding mode control is considered. When using the conventional VSC, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. In order to overcome these problems, a robust position control method of the BLDC motor using an adaptive fuzzy VSC without leaching phase is presented.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

Optimum Design of Neural Networks for Flight Control System (신경회로망 구조 최적화를 통한 비행제어시스템 설계)

  • Choe,Gyu-Ho;Choe,Dong-Uk;Kim,Yu-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.75-84
    • /
    • 2003
  • To reduce the effects of the uncertainties due to the modeling error and aerodynamic coefficients, a nonlinear adaptive control system based on neural networks is proposed . Neural networks parameters are adjusted by using an adaptive law. The sliding mode control scheme is used to compensate for the effect of the approximation error of neural networks. Control parameters and neural networks structures are optimized to obtain better performance by using the genetic algorithm. By introducing the concept of multi-groups of populations, the genetic algorithm is modified so that individuals and groups can be simultaneously evolved . To verify the performance of the pro posed algorithm, the optimized neural networks control system is applied to an aircraft longitudinal dynamics.

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

Adaptive Algorithms for Yaw Moment Distribution with ESC and ARS (적응 알고리즘을 이용한 ESC와 ARS 기반 요 모멘트 분배)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.997-1003
    • /
    • 2016
  • This paper presents an application of adaptive algorithms for yaw moment distribution with electronic stability control (ESC) and active rear steering (ARS) in integrated chassis control (ICC). Integrated chassis control consists of upper- and lower-level controllers. In the upper-level controller, the control yaw moment is computed with sliding mode control required to stabilize a vehicle. In the lower-level controller, adaptive algorithms are applied to determine the required brake pressure of ESC and the necessary steering angle of ARS, in order to generate the control yaw moment. Simulation is performed using the vehicle simulation package CarSim to validate the proposed method.