• Title/Summary/Keyword: sliding lead rubber bearing

Search Result 4, Processing Time 0.016 seconds

Seismic Response of Apartment Building with Base Isolation System Consisting of Sliding-type Bearing and Lend Rubber Bearing (LRB와 슬라이딩베어링을 혼용한 면진시스템을 적용한 아파트 건물의 지진 응답)

  • Chun, Young-Soo;Yoon, Young-Ho;Whang, Ki-Tea;Chang, Kug-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.507-514
    • /
    • 2007
  • This paper summarizes the results of a research on the isolate effects and economical efficiencies of seismic isolation design compared with the existing earthquake-resistant design, and presents seismic performance of the base isolation system consisting of sliding-type bearing and lead rubber bearing (LRB) compared with that consisting of the LRB only. From the results of the research, it is verified that seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease of the floor acceleration. Also, from the point of view of reduction of story acceleration and base shear, the base isolation system consisting of sliding-type bearing and LRB is more effective than that with LRB only. In respect of economical efficiency, special care should be taken in using this method since costs which have to be paid in proportin to increased performance are high.

The Development of Seismic Monitoring for a Base-Isolated Building System (지진격리 구조물의 지진모니터링 시스템 개발)

  • 김성훈;조대승;박해동;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.247-251
    • /
    • 2001
  • Nowadays, base isolation systems such as lead-rubber bearing, elastomer bearing and sliding bearing have been installed to the various structures to prevent the disaster from seismic. The performance of base isolation system have been well proved by model-scale experiments and numerical analysis. However. the seismic response data measured at real large base-isolated structures is still insufficient. This paper presents a seismic monitoring system, acquiring real-time acceleration signals up to 32 channels, displaying time history and spectrum of the signals, storing the acquired data at a PC hard disk, and replaying the saved data. Moreover, the system can be operated without any limitation for monitoring period by automatic management of stored data file. The developed system has been installed at a real base-isolated building using lead-rubber bearings and we expect its seismic response data with ground motion signal can be well licquired in case of earthquake occurrence.

  • PDF

Development of Seismic Isolation Device with LRB and Shock Transmission Units and Its Verification Tests (LRB 댐퍼 조합형 지진격리장치 개발 및 특성평가실험)

  • 서주원;김남식;임진석;유문식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.383-390
    • /
    • 2002
  • The new seismic isolation system (StLRB) is developed, which can separate non-seismic displacements which come from the thermal expansion etc. in LRB design. The StLRB has 3 components, sliding system (PTFE + stainless plate), LRB (lead rubber bearing) and STU (shock transmit units). In this project, the StLRB is designed to apply to the bridge structure by analyzing the characteristics of each component and also the dynamic behavior of the structure was analyzed by non-linear analysis. The verification test was performed to show the two stages separated by STU units. Test results show the effectiveness of both the separation and the seismic isolation performance.

  • PDF

Seismic performance of hybrid isolation plate-shell integrated concrete LSS

  • Lei Qi;Xuansheng Cheng;Shanglong Zhang;Yuyue Bu;Bingbing Luo
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.57-67
    • /
    • 2024
  • To assess the seismic performance of Plate-Shell Integrated Concrete Liquid-Storage Structure (PSICLSS), a scaled test model was constructed. This model incorporated a hybrid isolation system, which combined shape memory alloy (SMA), lead-cored rubber isolation bearing (LRB) and sliding isolation bearing (SB). By conducting shaking table test, the dynamic responses of both non-isolated and hybrid-isolated PSICLSS were analyzed. The results show that the hybrid isolation system can effectively reduce the acceleration and displacement responses of the structure. However, it also results in an increase in local hydrodynamic pressure and liquid sloshing height. Under extreme earthquake action, the displacement of isolation layer is small. When vertical ground motion is taken into account, the shock absorption rate of horizontal acceleration decreases. The peak hydrodynamic pressure increases significantly, and the peak hydrodynamic pressure position also changes. The maximum displacement of isolation layer increases, the residual displacement decreases.