• Title/Summary/Keyword: sliding contact

Search Result 483, Processing Time 0.031 seconds

Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage (기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향)

  • Kim, Hwan;Kim, ChoongYeon;Lee, KwonYong;Kim, DaeJoon;Kim, DoHyung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.

Sliding Friction of Elastomer Composites in Contact with Rough Self-affine Surfaces: Theory and Application (자기-아핀 표면 특성을 고려한 유기탄성체 복합재료 마찰 이론 및 타이어 트레드/노면 마찰 응용)

  • Bumyong Yoon;Yoon Jin Chang;Baekhwan Kim;Jonghwan Suhr
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • This review paper presents an introduction of contact mechanics and rubber friction theory for sliding friction of elastomer composites in contact with rough surfaces. Particularly, Klüppel & Heinrich theory considers the self-affine (or fractal) characteristic for rough surfaces to predict adhesion and hysteresis frictions of elastomers based on the contact mechanics of Greenwood & Williamson. Due to dynamic excitation process of elastomer composites while sliding in contact with multiscale surface roughness (or asperity), viscoelastic properties in a wide frequency range becomes major contributor to friction behaviors. A brief description and examples are provided to construct a viscoelastic master curve considering nonlinear viscoelasticity of elastomer composites. Finally, application of rubber friction theory to tire tread compounds in traction with road surfaces is discussed with several experimental and theoretical results.

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

The Improvement of Incompatible Sliding Contact Problem Using Mesh Refinement And Its Application to Railway Skewed Culvert Problem (요소 세분화를 이용한 비적합 미끄러지는 접촉문제의 개선과 철도 사각암거 문제에의 적용)

  • Choi, Chan-Yong;Yeo, In-Ho;Chung, Keun-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • The vehicle-track structure dynamic interaction analysis problem can be treated as sliding contact problem, and it is assumed that vehicle run at a constant speed over a rail modeled as beam elements. Unfortunately, Salome-Meca can not satisfy the compatibility condition for the beam master elements, which are consist of the elements with higher order polynomial shape function, in sliding contact problem. In this study, it is suggested to use more finer beam master element mesh as the remedy for incompatibility in sliding contact problem, and the accuracy of the solution is secured. For this, the effect of beam element mesh refinement consisting runway is analysed through simple examples, and the applicability to the dynamic interaction analysis is evaluated. Finally, the dynamic interaction analysis of railway skewed culvert transition problem is carried out to evaluate the effect of supporting stiffness due to backfill pattern changes and track irregularity due to uneven subgrade settlement.

A Study on the Wear Characteristics of Aluminizing Steel ( 1 ) - Wear in Run-in Period on Rolling-Sliding Contact - (알루미나이징 강의 마모특성에 관한 연구 ( 1 ) - Rolling-Sliding 마찰의 초기마모영역을 중심으로 -)

  • 이규용
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1978
  • It is well known that the aluminizing steel is excellent in corrosion resistance and heat resistance. Therefore it has been used as boiler parts, heat exchanger parts and guide rails which are used under comparatively simple conditions. Recently, it has been noticed that aluminizing steel has high resistance to various atmosphere, high temperature oxidation and seawater resistance. So its usage has been extended widely to the production of parts such as intake and exhaust valve of internal combustion engine, turbine blade and pipelines On ships which required such properties. It is considered that aluminium coated steel is excellent in wear resistance because of high hardness on main ingredient FezAIs of Fe-AI alloy layer existed in diffusion coating layer. And it will beused as a new material taking wear resitance with seawater resistance in marine field. However it is difficult to findout any report concering the wear behaviors or properties of alum in izing steel. In this study the experiment was carried out under the condition of rolling-sliding contact using an Amsler-type wear testing machine at 0.80, 0.91, 1. 10, 1. 25% of slip ratio and 55.43, 78.38, 110.85 kg/mm^2 of Hertz's contact stress in run-in period for the purpose of service-ability test of aluminizing steel as a wear resisting material and obtaining the available design data. The followings are the obtained results from the experimen tal study; 1) The 2nd diffusion material has most excellent wear resistance. This material has brought out about 18% decrease of wear weight in a lower friction load level and 40~G decrease in a higher level comparing to the raw material. 2) Satisfactory effect of wear resistivity cannot be much expected in 2nd diffusion specimens. This is considered due to the formation of fine void in the alloy layer near the boundary to the aluminium layer. 3) Fracture on friction surface of aluminizing steel by the rolling-sliding contact is spalling, and spalling crack occurres initially beneath the specimen surface near the boundary in diffusion coating layer.

  • PDF

A Study on The Wear Process and Wear Mechanism of the Alumina Ceramics with Different Alumina Purity (순도를 달리한 알루미나 세라믹스의 마멸과정 및 이의 기구에 관한 연구)

  • 전태옥;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3404-3412
    • /
    • 1994
  • The present study was undertaken to investigate the dry wear process and wear mechanism of the alumina ceramics in the purity variation which are used for the mechanical seal, roll, liner and dies. The wear test was carried out under different experimental condition using the wear testing device and in which the annular surface rubbed on dry sliding condition various sliding speed, contact pressure and sliding distance. In case of alumina purity 95%, there was speed range which wear loss increased rapidly owing to enlargement of heat impact force and temperature rise of wear surface. According as the alumina purity increased, wear loss decreased but alumina purity 85% with much void and defect had the most wear loss than any other alumina purity. The friction coefficient of sliding initial stage of wear curves has a large value but according to increase of sliding distance, it decreased owing to drop of the shear strength of wear surfaces.

Resolving the Inconsistency of Rigid Body Frictional Mechanics $-L\ddot{o}tstedt$'s Sliding Rod (마찰력이 개재된 강체역학에서 불일치의 해소 $-L\ddot{o}tstedt$의 미끄러지는 막대)

  • 한인환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.866-875
    • /
    • 1994
  • The problem of a rigid rod sliding on a rough horizontal surface in the plane is analyzed, which is commonly cited as an example of the inconsistency of rigid body frictional mechanics. The inconsistency is demonstrated by analyzing the normal reaction force at the contact point with the surface, and the concept of tangential collision is derived to resolve the inconsistency. Using the Poisson's hypothesis for the coefficient of restitution and Coulomb's law for the friction, the general methodology for solving the tangential collision is presented. The problem of the inconsistency generated in the sliding rod is completely resolved, building the concept of the tangential collision and adopting the theory of frictional impact. The result presented in this paper will obviate a generic obstacle to the development of simulation packages for planar rigid body mechanical systems with temporary contacts, and planning efficient motion strategies for robot manipulators.

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • Jeon, Byung-Hee;Kim, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.