• 제목/요약/키워드: sliding angle

검색결과 286건 처리시간 0.024초

Micro-Implant Anchorage(MIA)를 이용한 Sliding mechancis (A new protocol of the sliding mechanics with Micro-Implant Anchorage(M.I.A.))

  • 박효상
    • 대한치과교정학회지
    • /
    • 제30권6호
    • /
    • pp.677-685
    • /
    • 2000
  • 고정원의 조절은 교정치료에 있어서 매우 중요한 요소로 이를 보강하기 위한 많은 노력이 있어 왔다. 골융합성 임프란트의 경우 확실한 고정원으로서 가능성이 인정되고 있고, 또 임상에서 시도되고 있다. 그러나 임프란트를 매식하기 위해서는 무치악이 존재해야 하거나 하악구치 후방부위에 식립해야 하는 등 장소의 제약이 있고, 값이 비싸며, 골융합을 위하여 기다리는 시간이 필요하다는 등의 단점으로 인하여 보편화되고 있지는 않다. 최근 몇몇 임상가에 의하여 수술용 titanium microscrew 나 miniscrew를 교정치료시의 고정원으로 사용하려는 시도가 있었는데, 이것은 골융합성 임프란트보다 수술이 간단하며, 가격이 저렴하고, 치조골 어느 부위든지 식립할 수 있다는 장점이 있다. 저자는 M.I.A.(Micro-Implant Anchorage)를 고정원으로 사용한 sliding mechanics를 통하여 골격성 II급 부정교합자를 치료하였다. 상악의 M.I.A.는 상악전치의 후방견인의 고정원으로 사용되었고 하악의 M.I.A.는 하악 제1대구치의 직립과 제2대구치의 압하이동의 고정원으로 사용되었다. 하악 구치가 직립됨에 따라 하악골의 전상방 회전이 일어나 SNB각의 증가로 이어지고 ANB각의 감소를 가져 왔다. M.I.A.는 치료 전기간동안 안정되게 유지되어 교정치료의 고정원으로서의 가능성을 확인시켜 주었다. M.I.A.를 고정원으로 사용한 sliding mechanics를 통하여 골격성 II급 부정교합자를 치료하는 새로운 접근법은 환자의 협조도에 의존하지 않고 치료할 수 있고, 비교적 빠른 시기에 많은 안모의 변화를 가져와 환자의 협조도를 끌어 낼 수 있다. 그리고 상악 6전치를 동시에 후방견인하므로 치료기간을 줄일 수 있으며 호선의 교환이 적어 chair time이 짧다. 이런 결과로 미루어 볼 때 MIA는 치아이동의 고정원으로 역할을 할 수 있을 것으로 생각되고, MIA를 고정원으로 이용한 sliding mechanics를 통한 교정치료는 골격성 II급 부정교합의 치료에 있어서 쉽고 효율적인 치료법으로 생각된다.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구 (A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller)

  • 박병석;윤지섭;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제6권11호
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

슬라이드 링크 구조를 이용한 원터치 완강기 (One-touch Descending Lifeline with Sliding Linkage Structure)

  • 김원찬;나다율;문혜인;김상현
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.42-47
    • /
    • 2021
  • A one-touch descending lifeline that can easily be installed and rapidly evacuated in the event of a fire accident in high-rise buildings was proposed to overcome difficulties of conventional descending lifeline such as complex installation methods and procedures. However, this lifeline exhibits limitations such as restrictions in installation location and large apparatus size. Therefore, this paper proposes a sliding-type descending lifeline, which has a similar operation to that of current one-touch descending lifeline and solves the aforementioned limitations. A double square link mechanism including a sliding four-bar linkage is proposed and the descending lifeline support is redesigned to unfold in two different planes, allowing 3D movement. Additionally, the shape of the support frame is designed to obtain two attachment surfaces that can be attached to a wall, irrespective of the angle between the window and the inner wall. FEA analysis using ABAQUS is performed to ensure that the robustness of the presented support complies with the Fire Control Act Enforcement Decree. Finally, the feasibility of the proposed sliding one-touch descending lifeline is verified through fabrication.

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작 (Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures)

  • 김동현;박현철;이건홍;황운봉
    • Composites Research
    • /
    • 제20권2호
    • /
    • pp.17-20
    • /
    • 2007
  • Oxalic acid를 이용한 양극산화기법과 테플론 담금법을 이용하여 극소수성 나노/마이크로 구조물을 복제하였다. 이때 nanoscale hole의 사이즈는 양극산화시의 전압과 양극산화시간에 의해 결정된다. nanoscale에서 분자들 사이에 영향을 미치는 Van der Waals interactions에 의해서 복제 중 polymer sticking 현상이 발생한다. 이는 복제된 나노 구조물들이 서로 들러붙고 구부러지고 침강시키는 작용을 하게 된다. 이러한 현상이 microstructures위에 nanostructures가 존재하는 hierarchical structure가 생성되게 하며, 이러한 구조물은 연꽃잎의 미세구조물과 유사한 특성을 보인다. 즉 제작된 극소수성 나노/마이크로 구조물 표면은 접촉각이 $160^{\circ}{\sim}170^{\circ}$정도로 나타내고 또한 $1^{\circ}$미만의 sliding angle을 나타낸다.

Micro-scale Grooved Crosshatch Pattern의 각도 및 폭에 따른 실험적 미끄럼마찰특성 (Friction Property of Angle and Width Effect for Micro-grooved Crosshatch Pattern under Lubricated Sliding Contact)

  • 채영훈;김석삼
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.110-116
    • /
    • 2011
  • The current study investigated the friction property of angle and width effect for micro-scale grooved crosshatch pattern on SKD11 steel surface against bearing steel using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of a hatched-angle and a width of groove on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. So It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction. Also, it is play an important a width of groove to be improved the friction property. I was found that friction property has a relationship between a width and an angle for micro-grooved pattern.

시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어 (Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface)

  • 이창노;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.