• 제목/요약/키워드: sliding angle

검색결과 286건 처리시간 0.035초

비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어 (Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer)

  • 오소력;최재원;김종식
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

Controller design for an autonomous underwater vehicle using nonlinear observers

  • Negahdaripour, Shahriar;Cho, So-Hyung;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.16-27
    • /
    • 2011
  • The depth and heading control of an autonomous underwater vehicle (AUV) are considered to follow the predetermined depth and heading angle. The proposed control algorithm was based on a sliding mode control, using estimated hydrodynamic coefficients. The hydrodynamic coefficients were estimated employing conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. Using the estimated coefficients, a sliding mode controller was constructed for a combined diving and steering maneuver. The simulated results of the proposed control system were compared with those of a control system that employed true coefficients. This paper demonstrated the proposed control system, and discusses the mechanisms that make the system stable and accurately follow the desired depth and heading angle in the presence of parameter uncertainty.

지향각, 시선각 정보를 이용한 이동표적의 충돌각 제어 (Impact Angle Control for Non-maneuvering Target with Look Angle Measurements and Line of Sight)

  • 박장성;이동희;박상혁;김윤환
    • 한국항공우주학회지
    • /
    • 제47권7호
    • /
    • pp.508-516
    • /
    • 2019
  • 본 논문은 이동표적에 대해서 고정형 탐색기(Strapdown Seeker)가 장착된 유도탄의 지향각 제한을 고려하여 충돌각(Impact Angle)을 제어하는 유도법칙을 제안하고 있다. 제안한 유도법칙은 슬라이딩 모드를 기반으로 하고 있으며, 탐색기에서 제공하는 지향각과 항법 정보를 통해 얻을 수 있는 시선각 정보와 발사 초기 표적 획득장비 등을 통해 제공 받는 표적 속도와 표적 이동경로각을 이용하여 가속도 명령을 생성한다. 제안한 슬라이딩 surface의 수렴을 통해 표적 요격과 충돌각 제어가 가능하다. 또한, 최대, 최소 지향각에서 지향각의 미분결과의 부호가 지향각의 부호와 반대가 된다는 것을 보임으로써 지향각 제한을 넘지 않는다는 것을 확인할 수 있다.

컨테이너 크레인용 레일클램프의 U형 쐐기 형상설계 (Shape Design of the U-Type Wedge of the Rail Clamp for a Container Crane)

  • 한동섭;한근조
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.117-122
    • /
    • 2009
  • The wedge type rail clamp compresses the rails with small clamping force at first, and with large clamping force when the wind speed increases because of the wedge working. If the supporter is not installed in the rail clamp with V-type wedge when the wind speed increases more and more, the structure will occur overload which leads the structure to fracture. But in the clamp with U-type wedge the supporter is not necessary because the tangential angle of the wedge increases as the sliding distance increases. The proper shape of U-type wedge is determined by the initial clamping force and the tangential angle of the wedge. Accordingly we, first carry out the finite element analysis in order to analyze the relation between the sliding distance and the wedge angle. Next we suggest the proper shape of U-type wedge as analyze the relation between the radius of curvature and the sliding distance.

  • PDF

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

Design of Structured Surfaces for Directional Mobility of Droplets

  • Osada, Takehito;Kaneko, Arata;Moronuki, Nobuyuki;Kawaguchi, Tomoyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.13-17
    • /
    • 2008
  • This paper deals with the directional mobility of droplets on structured surfaces. Structured surfaces were micro-patterned with rectangular lines and spaces of varying pitch and height in the sub-millimeter range. The material used was polydimethylsiloxane, which is hydrophobic and wettable by oil. First, we studied the effect of the structural design on the sliding angle of pure water or oil through experiments. For pure water droplets, we found that a wider pitch enhanced the directionality. On the other hand, oil droplets spread along the groove because of their low surface tension and strong capillary force. The directionality of the sliding angle of oil droplets was larger than that of pure water, especially when the groove was narrower and deeper. Second, we poured a large amount of liquid on the structure and evaluated the removal rate on the tilted surface. We found that a parallel structure enhanced the liquid mobility for both pure water and oil.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • 한국항해항만학회지
    • /
    • 제42권2호
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

Sliding Mode Control 및 Fuzzy Logic Control 방법을 이용한 AFS 및 ARS 제어기 설계 및 성능 평가 (Design and Evaluation of AFS and ARS Controllers with Sliding Mode Control and Fuzzy Logic Control Method)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.72-80
    • /
    • 2013
  • This study is to develop and evaluate an AFS and an ARS controllers to enhance lateral stability of a vehicle. A sliding mode control (SMC) and a fuzzy logic control (FLC) methods are applied to calculate the desired additional steering angle of AFS equipped vehicle or desired rear steer angle of ARS equipped vehicle. To validate AFS and ARS systems, an eight degree of freedom, nonlinear vehicle model and an ABS controllers are also used. Several road conditions are used to test the performances. The results showed that the yaw rate of the AFS and the ARS vehicle followed the reference yaw rate very well within the adhesion limit. However, the AFS improves the lateral stability near the limit compared with the ARS. Because the SMC and the FLC show similar vehicle responses, performance discrimination is small. On split-${\mu}$ road, the AFS and the ARS vehicle had enhanced the lateral stability.

감지시스템을 통한 차량의 횡 속도 및 슬립각 추정 (Monitoring System Design for Estimating Lateral Velocity and Sideslip Angle)

  • 한상오;허건수
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.51-57
    • /
    • 2011
  • Information of the lateral velocity and the sideslip angle in a vehicle is very useful in many active vehicle safety applications such as yaw stability control and rollover prevention. Because cost-effective sensors to measure the lateral velocity and the sideslip angle are not available, reliable algorithms to estimation them are necessary. In this paper, a sliding mode observer is designed to estimate the lateral velocity. The side slip angle is estimated using the recursive least square with the disturbance observer and the pseudo integral. The estimated parameters from the combined estimation method are updated recursively to minimize the discrepancy between the model and the physical plant, and any possible effects caused by disturbances. The performance of the proposed monitoring system is evaluated through simulations and experiments.