• 제목/요약/키워드: slider dynamics

검색결과 41건 처리시간 0.022초

형상기억합금 작동기를 이용한 비접촉 시동 및 정지형 하드디스크 드라이브의 운동제어 (Motion Control of Non-Contact Start/stop Hard Disk Drive Using Shape Memory Alloy Actuator)

  • 임수철;박종성;최승복;박영필
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.196-202
    • /
    • 2002
  • In this work, we propose a new type of HDD suspension featuring shape memory alloy (SMA) actuator in order to prevent the contact between the slider and disk. The principal design parameters are obtained from the modal analysis using finite element analysis, and then the dynamic model is established to formulate the control scheme for Non-Contact Start/stop mode drive. Subsequently, a robust H$\_$$\infty$/ control algorithm is designed by integrating experimentally-Obtained SMA actuator dynamics to the proposed HDD suspension system. The controller is empirically realized and control results for the load/unload profiles are presented in time domain. In addition, the contact signal between the slider and disk is measured by the electrical resistance method.

고트랙밀도 HDD 서스펜션의 동특성 해석 (suspension dynamics of HDD for high track density)

  • 김정주;전정일;변용규;노광춘;정정주;전태건
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.

디스크 댐퍼 형상이 HDD 내부 유동 및 TMR에 미치는 영향 (Effects on TMR and Airflow in HDD Cavity due to Disk Damper Shapes)

  • 엄요한;임윤철
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 2005
  • The recording density of a hard disk drive is increasing so rapidly that the storage capacity of a commercial HDD in PC reaches several hundred giga bytes recently. Many technologies related to the HDD, such as servo, media, actuator dynamics, thermo and fluid dynamics, etc. must be developed together to realize high recording density. Especially, researches in the airflow inside the HDD cavity become important as the rotational speed of a disk increases. Typical problem due to the airflow is the vibration of an actuator as the airflow collides with an I-block, suspensions and sliders, that is, FIV(Flow Induced Vibration). This problem is one of the significant sources of increasing TMR so that it must be resolved. In this research, a disk damper shape has been modified to minimize the effects of airflow on the actuator. Modified disk dampers which change flow field inside HDD cavity show good effects not only on the disk (tufter but also on the vibration of an actuator. Vibrations of E- block and slider have been measured with LDV and the airflow field inside the HDD cavity has been analyzed using a commercial package to verify these effects.

  • PDF

디스크 댐퍼 현상이 HDD 내부 유동 및 TMR에 미치는 영향 (Effects on TMR and Airflow in HDD Cavity due to Disk Damper Shapes)

  • 엄요한;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.32-37
    • /
    • 2006
  • The recording density of a hard disk drive(HDD) has been increased so rapidly that the storage capacity of a commercial HDD for the personal computer already reaches several hundred giga-bytes recently. Many technologies related to the HDD, such as servo, media, actuator dynamics, thermo and fluid dynamics, etc. must be developed together to realize higher recording density. Especially, airflow inside the HDD cavity has been concerned as the rotational speed of the disk increases. Typical problem due to the airflow is the off-track vibration of a head stack assembly(HSA) as the airflow collides with the E-block, suspensions, and sliders, i.e., the flow induced vibration(FIV). This problem is one of the most significant sources of the track mis-registration(TMR) so that it must be resolved. In this study, disk damper shape is modified to minimize the influence of airflow on the HSA. Modified disk dampers, which change the flow field of the inside cavity of a HDD, show good effects not only on the disk vibration but also on the off-track vibration of a HSA. Vibrations of E-block and slider have been measured with LDV and the airflow field inside the HDD cavity has been analyzed with commercial CFD program to verify these effects.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

Inverse Dynamic Analysis of Flexible Multibody Systems with Closed-Loops

  • Lee, Byung-Hoon;Lee, Shi-Bok;Jeong, Weui-Bong;Yoo, Wan-Suk;Yang, Jin-Saeng
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.693-698
    • /
    • 2001
  • The analysis of actuating forces (or torques) and joint reaction forces (or moments) are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an inverse dynamic analysis algorithm for flexible multibody systems with closed-loops in the relative joint coordinate space. The joint reaction forces are analyzed in Cartesian coordinate space using the inverse velocity transformation technique. The joint coordinates and the deformation modal coordinates are used as the generalized coordinates of a flexible multibody system. The algorithm is verified through the analysis of a slider-crank mechanism.

  • PDF

Harmonic Motion-based Simulator Design for Multipurpose Sports Simulation

  • Yang, Jeong-Yean
    • International journal of advanced smart convergence
    • /
    • 제4권2호
    • /
    • pp.163-169
    • /
    • 2015
  • This study proposes a sports simulation device with various harmonics generation. The proposed system is composed of 6 degrees of freedom simulator devices and three types of sports simulation such as walking, snowboard, and jet-ski. In this research, every joint movement is designed with a crank-and-slider mechanism, which is efficient for generating continuous curvature smoothly. Contrary to the conventional spatial simulator with linear actuators, harmonics generation and its spatial combinations become the crucial issue in this research. The harmonic pattern in each joint is modelled for generating smooth curvatures that are also superposed for achieving overall motions. In addition, the targeted motions of sports simulations have different physical factors of periodic gait motion, frictionless surface, and buoyant effects, which are respectively designed by integrating three dimensional graphics information.

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF

내충격 성능 향상을 위한 랩탑 하드디스크의 베이스 설계 (Base Structure Design of Laptop HDD for Anti-Shock Performance)

  • 임승호;박노철;박영필;박경수;설웅;김경태
    • 정보저장시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.76-81
    • /
    • 2009
  • Mobile devices have become an important part of daily life. This is especially true of laptop PCs, which are portable enough to be used almost anywhere. Laptop PCs, however, cannot be nomadic if each component is not robust enough to endure rugged laptop operating environment. Generally, external shock makes collision on head-disk interface and damage to read-write performance. To minimize the likelihood of failure, shock analysis must be incorporated into the design of hard disk drive in laptop. This research explores the structure modification of laptop HDD base, for improving shock performance using finite element analysis which considers the flexibility of whole HDD structure. FE model is verified by modal test and finely tuned. Then we obtained the transmitted acceleration of spindle and pivot and the relative displacement between disk and slider head as shock response. Based on shock simulation, the structural dynamics modification is performed and the primary design parameters are extracted.

  • PDF

회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계 (A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases)

  • 표상훈;김갑순;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.