• Title/Summary/Keyword: slenderness

Search Result 524, Processing Time 0.026 seconds

Experiments for the Buckling Behavior of Reinforced Concrete Columns (철근콘크리트 기둥의 좌굴거동에 관한 실험적 연구)

  • 조성찬;장정수;김진근;김윤용;김광석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.284-289
    • /
    • 1993
  • To analyze the effects of compressive strength of concrete and longitudinal steel ratio on buckling behavior of columns, 36tied reinforced concrete columns with hinged ends were tested. The 100mm square cross section was used and the amount of eccentricity was 10mm. The compressive strengths of column specimens with slenderness ratios of 15, 30 and 50 were 202, 513 and 752 kg/$\textrm{cm}^2$. The longitudinal steel ratio of columns with bending about a section diagonal and about a principal axis were 2.85%(4-D10). The ratio of ultimate load capacity to that of short column with the same eccentricity was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio, the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that for the same quantity of confining steel and level of axis load, there is little difference between the flexural strength for bending about a section diagonal and for bending about principal axis.

  • PDF

P-M interaction curve for reinforced concrete columns exposed to elevated temperature

  • Kang, Hyun;Cheon, Na-Rae;Lee, Deuck Hang;Lee, Jungmin;Kim, Kang Su;Kim, Heung-Youl
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • The strength and deformational capacity of slender reinforced concrete (RC) columns greatly rely on their slenderness ratios, while an additional secondary moment (i.e., the $P-{\delta}$ effect) can be induced especially when the RC column members are exposed to fire. To evaluate the fire-resisting performances of RC columns, this study proposed an axial force-flexural moment (i.e., P-M) interaction curve model, which can reflect the fire-induced slenderness effects and the nonlinearity of building materials considering the level of stress and the magnitude of temperature. The P-M interaction model proposed in this study was verified in detail by comparing with the fire test results of RC column specimens reported in literature. The verification results showed that the proposed model can properly evaluate the fire-resisting performances of RC column members.

Stiffening evaluation of flat elements towards stiffened elements under axial compression

  • Manikandan, P.;Arun, N.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.71-86
    • /
    • 2018
  • Thin-walled cross-sections can be optimized to enhance their resistance and progress their behaviour, leading to more competent and inexpensive structural system. The aim of this study is to afford a methodology that would facilitate progress of optimized cold formed steel (CFS) column section with maximum ultimate strength for practical applications. The proposed sections are designed to comply with the geometrical standards of pre-qualified column standards for CFS structures as well as with the number of industrialized and practical constraints. The stiffening evaluation process of CFS lipped channel columns, a five different cross section are considered. The experimental strength and behaviour of the proposed sections are verified by using the finite element analysis (FEA). A series comprehensive parametric study is carried out covering a wide range of section slenderness and overall slenderness ratio of the CFS column with and without intermediate web stiffeners. The ultimate strength of the sections is determined based on the Direct Strength Specification and other design equation available from the literature for CFS structures. A modified design method is proposed for the DSM specification. The results indicate that the CFS column with complex edge and intermediate web stiffeners provides an ultimate strength which is up to 78% higher than standard optimized shapes with the same amount of cross sectional area.

Turning Characteristics of differential materials (이종 금속의 선삭 가공 특성에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

A Comparison of Design Strength Equations between Steel and Fiber Reinforced Polymer Composites Columns (철골 및 섬유보강 폴리머(FRP) 복합 기둥의 설계강도식에 관한 비교 연구)

  • Choi, Yeol;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.85-93
    • /
    • 2003
  • Steel, concrete and their combination materials are the most 6commonly used materials for civil engineering structural systems such as buildings, bridge structures and other structures. Recently, however, fiber reinforced polymer (FRP) composites, a relatively new composite material made of fibers and polymer resins, have been gradually used in structural systems as an alternative structural material. This paper describes a comparison of design strength equations for steel column and FRP composite column based on design philosophies. The safety factors used in allowable stress design (ASD) are relatively higher in FRP structural design than steel structural design. Column critical stress equations of FRP composites column from an experimental study can be represented by Euler elastic buckling equation at the long-range of slenderness, and an exponential form at the short-range of slenderness as defined in Load and Resistance Factor Design (LRFD) of steel column. The column strength of steel and FRP composite columns in large slenderness is independent of material strength, this result verified the elastic buckling equation as derived by Eq. (15) and Eq. (5).

  • PDF

Ultimate strength of simply supported plate with opening under uniaxial compression

  • Yu, Chang-Li;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.423-436
    • /
    • 2012
  • Unstiffened plates are integral part of all kinds of structures such as ship and offshore oil platforms. Openings are unavoidable and absolutely reduce the ultimate strength of structures. In this study, the finite element analysis package, ABAQUS, is used to analyze the behavior of unstiffened plate with rectangular opening. The rectangular opening form is divided into two cases. In case1, opening depth is constant, but opening width is varied. Meanwhile, in case2 opening width is fixed and opening depth is varied. Besides, for the two different form opening, the effect of plate slenderness parameter (${\beta}$), opening area ratio (AR) and opening position ratio (PR) on the ultimate strength of plate with opening under axial compression are presented. It has been found that the ultimate strength of plate ofcase1is much more sensitive to the plate slenderness parameter (${\beta}$) and opening area ratio (AR) than that of case2. However, for case1, opening position (PR) almost has no effect on the ultimate strength, whereas, regardingcase2, the influence of opening position (PR) depends on the plate slenderness parameter (${\beta}$). Based on nonlinear regression analysis, three design formulae are not only developed but also approved reasonably for the practical engineering design.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

Behavior of CFS built-up battened columns: Parametric study and design recommendations

  • Vijayanand, S;Anbarasu, M
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.381-394
    • /
    • 2020
  • The structural performance of cold-formed steel (CFS) built-up battened columns were numerically investigated in this paper. The built-up column sections were formed by connecting two-lipped channels back-to-back, with a regular spacing of battens plates, and have been investigated in the current study. Finite element models were validated with the test results reported by the authors in the companion paper. Using the validated models, the parametric study was extended, covering a wider range of overall slenderness to assess the accuracy of the current design rules in predicting the design strengths of the CFS built-up battened columns. The parameters viz., overall slenderness, different geometries, plate slenderness (b/t ratio) and yield stress were considered for this study. In total, a total of 228 finite element models were analyzed and the results obtained were compared with current design strength predicted by Effective Width Method of AISI Specifications (AISI S100:2016) and European specifications (EN1993-1-3:2006). The parametric study results indicated that the current design rules are limited in predicting the accuracy of the design strengths of CFS built-up battened columns. Therefore, a design equation was proposed for the AISI and EC3 specifications to predict the reliable design strength of the CFS Built-up battened columns and was also verified by the reliability analysis.

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.