• Title/Summary/Keyword: slender structures

Search Result 226, Processing Time 0.025 seconds

An Experimental Study on Stength of Slender Square Tube Columns Filled with High Strength Concrete (고강도콘크리트충전 각형강관장주의 내력에 관한 실험적 연구)

  • Seo, Seong Yeon;Chung, Jin An
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.471-479
    • /
    • 2002
  • In this paper, 18 square CFT columns filled with high-strength concrete were tested under concentric or eccentric axial loading. Two parameters of the experimental program included the buckling length-section depth ratio ($L_K$/D) and the eccentricity of the appled compressive load (e). In additon, mechanical properties such as the compressive concrete strength and compressive and tensile steel strength were measured and incorporated into the material models for the stress-strain relationships of concrete and steel. This model was used in an elasto-plastic analysis in order to predict the behavior of the slender CFT columns. Observtions of the failure mode during the tests under axial loadig were also presented. The strengths obtained from the analysis. Recommendations for Design, and Constructions of CFT structures were presented, as verified by the experimental results.

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al;Badaruzzaman, W.H. Wan;Ali, Mustafa M.;Hasan, Qahtan A.;Al-Shaikhli, Marwan S.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.123-139
    • /
    • 2020
  • The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

SSI Effects on the Dynamic Response of Structures (구조물-지반 상호작용이 구조물의 동적거동에 미치는 영향)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1993
  • Recently it is recognized that the effects of structure-soil interaction(SSI) on the response of structures are important in the dynamic analysis of structures. In this study, theoretical and experimental investigations were performed to study the SSI effects(mainly inertial interaction) on the dynamic response of buildings utilizing the finite element foumulation. Theoretical studies were performed with two idealized buildings(stubby one and slender one) built on the homogeneous soil layer and having the small embedment ratio. Experimental investigations were also carried out for two buildings built on the pile foundation in Mexico City, experienced the 1985 Earthquake. The results of this study show that the SSI effects are significant on the response of structures due to the change of fundamental frequency and effective damping ratio, and that it is necessary to include the SSI effects on the dynamic analysis of structures.

  • PDF

Computational study of the wind load on a free-form complex thin shell structure

  • Rodrigues, A. Moret;Tome, Ana;Gomes, M. Gloria
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.177-193
    • /
    • 2017
  • The accelerated development of new materials, technologies and construction processes, in parallel with advances in computational algorithms and ever growing computational power, is leading to more daring and innovative architectural and structural designs. The search for non-regular building shapes and slender structures, as alternative to the traditional architectural forms that have been prevailing in the building sector, poses important engineering challenges in the assessment of the strength and mechanical stability of non-conventional structures and systems, namely against highly variable actions as wind and seismic forces. In case of complex structures, laboratory experiments are a widely used methodology for strength assessment and loading characterization. Nevertheless, powerful numerical tools providing reliable results are also available today and able to compete with the experimental approach. In this paper the wind action on a free-form complex thin shell is investigated through 3D-CFD simulation in terms of the pressure coefficients and global forces generated. All the modelling aspects and calibrating process are described. The results obtained showed that the CFD technique is effective in the study of the wind effects on complex-shaped structures.

Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures

  • Heva, Yasintha Bandula;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.205-227
    • /
    • 2013
  • Current design standards do not provide adequate guidelines for the fire design of cold-formed steel compression members subject to flexural-torsional buckling. Eurocode 3 Part 1.2 (2005) recommends the same fire design guidelines for both hot-rolled and cold-formed steel compression members subject to flexural-torsional buckling although considerable behavioural differences exist between cold-formed and hot-rolled steel members. Past research has recommended the use of ambient temperature cold-formed steel design rules for the fire design of cold-formed steel compression members provided appropriately reduced mechanical properties are used at elevated temperatures. To assess the accuracy of flexural-torsional buckling design rules in both ambient temperature cold-formed steel design and fire design standards, an experimental study of slender cold-formed steel compression members was undertaken at both ambient and elevated temperatures. This paper presents the details of this experimental study, its results, and their comparison with the predictions from the current design rules. It was found that the current ambient temperature design rules are conservative while the fire design rules are overly conservative. Suitable recommendations have been made in relation to the currently available design rules for flexural-torsional buckling including methods of improvement. Most importantly, this paper has addressed the lack of experimental results for slender cold-formed steel columns at elevated temperatures.

Structural behaviour under wind loading of a 90 m steel chimney

  • Tranvik, Par;Alpsten, Goran
    • Wind and Structures
    • /
    • v.8 no.1
    • /
    • pp.61-78
    • /
    • 2005
  • This paper presents results from an investigation of the structural behaviour of a very slender 90 m high steel chimney erected at V$\ddot{a}$xj$\ddot{o}$ in southern Sweden in 1995. The chimney is equipped with a mechanical friction-type damper at the top. Due to a mistake during erection and installation of the chimney the transport fixings of the damper were not released properly and the chimney developed extensive oscillations in the very first period of service. This caused a great number of fatigue cracks to occur within a few months of service. After the functioning of the damper had been restored and the fatigue cracks were repaired an extensive program was initiated in 1996 to monitor the structural behaviour of the chimney under wind loading. In the investigation data were collected for more than six years of continuous measurements and regular observations of the chimney. The data obtained have some general relevance with respect to wind data, behaviour of a slender structure under wind loading, and the effect of a mechanical damper. Also some theoretical studies were performed as part of the investigation of the chimney.

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.

Slender RC columns strengthened with combined CFRP and steel jacket under axial load

  • Lu, Yi-yan;Li, Na;Li, Shan;Ou, Tian-yan
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1077-1094
    • /
    • 2015
  • This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading

  • Li, Guochang;Yang, Zhijain;Lang, Yan;Fang, Chen
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1487-1505
    • /
    • 2016
  • This paper presents the results of an experimental study on the behavior of a new type of composite FRP-concrete-steel member subjected to bi-axial eccentric loading. This new type of composite member is in the form of concrete-filled square steel tube slender columns with inner CFRP (carbon fiber-reinforced polymer) circular tube, composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. Tests on twenty-six specimens of high strength concrete-filled square steel tube columns with inner CFRP circular tube columns (HCFST-CFRP) were carried out. The parameters changed in the experiments include the slenderness ratio, eccentric ratio, concrete strength, steel ratio and CFRP ratio. The experimental results showed that the failure mode of HCFST-CFRP was similar to that of HCFST, and the specimens failed by local buckling because of the increase of lateral deflection. The steel tube and the CFRP worked together well before failure under bi-axial eccentric loading. Ductility of HCFST-CFRP was better than that of HCFST. The ultimate bearing capacity of test specimen was calculated with simplified formula, which agreed well with test results, and the simplified formula can be used to calculate the bearing capacity of HCFSTF within the parameters of this test.