• 제목/요약/키워드: slender column

검색결과 88건 처리시간 0.029초

Column design of cold-formed stainless steel slender circular hollow sections

  • Young, Ben;Ellobody, Ehab
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.285-302
    • /
    • 2006
  • This paper describes the design and behaviour of cold-formed stainless steel slender circular hollow section columns. The columns were compressed between fixed ends at different column lengths. The investigation focused on large diameter-to-plate thickness (D/t) ratio ranged from 100 to 200. An accurate finite element model has been developed. The initial local and overall geometric imperfections have been included in the finite element model. The material nonlinearity of the cold-formed stainless steel sections was incorporated in the model. The column strengths, load-shortening curves as well as failure modes were predicted using the finite element model. The nonlinear finite element model was verified against test results. An extensive parametric study was carried out to study the effects of cross-section geometries on the strength and behaviour of stainless steel slender circular hollow section columns with large D/t ratio. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel slender circular hollow section columns, while the American Specification is generally quite conservative. Therefore, design equation was proposed in this study.

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

편심을 받는 고강도콘크리트 장주의 2차모멘트에 관한 실험적 연구 (Experimental Study on Secondary Moment of High-Strength RC Slender Columns under Eccentric Loads)

  • 박동규;배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.571-576
    • /
    • 1998
  • This paper is a part of a research plan aimed at the verification of basic design rules of high-strength concrete columns. A total of 19 slender column specimens were tested to measure secondary moment and stiffness of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356kg/$\textrm{cm}^2$ to 951kg/$\textrm{cm}^2$, the longitudinal steel ratios were between 1.13% and 5.51%, and slenderness ratios were 40 and 61. Calculated moment magnification factors and column stiffness based on design codes are higher than the test results for high axial load under small eccentricity, for higher slenderness ratio, for lower longitudinal steel ratio, and for high-strength concrete. The moment magnification method of the current design codes may provide a very conservative design for high-strength concrete slender column.

  • PDF

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • 최석환;이명;이성우
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

탄소섬유쉬트(CFRP Sheets)로 보강된 장주 각형강관기둥의 중심축하중거동 (Behaviors of Long Square Hollow Section Columns Retrofitted using Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) Subjected to Concentrated Axial Loading)

  • 박재우;최선규;유정한
    • 한국강구조학회 논문집
    • /
    • 제25권3호
    • /
    • pp.299-305
    • /
    • 2013
  • 본 연구에서는 각형 중공강관(SHS) 장주기둥에 CFRP쉬트를 길이방향으로 보강하여 중심축하중 실험을 수행하였다. 총 3개의 장주실험체와 1개의 stub column 실험체를 제작하였으며, 실험변수는 CFRP 보강겹수이다. 실험결과 장주기둥에 대해 실험체 중간에서 전체좌굴이 발생하며 횡변위가 발생하여 파괴되었지만, CFRP쉬트의 보강을 통해 전체좌굴을 제어하며 횡변위로 인한 안정성을 확보하였다. 또한 CFRP쉬트의 보강으로 최대 22%의 내력이 상승하여 내력상승효과를 확인할 수 있었다.

강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동 (Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads)

  • 이성희;김영호;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

Finite element analysis of slender HSS columns strengthened with high modulus composites

  • Shaat, Amr;Fam, Amir
    • Steel and Composite Structures
    • /
    • 제7권1호
    • /
    • pp.19-34
    • /
    • 2007
  • This paper presents results of a non-linear finite element analysis of axially loaded slender hollow structural section (HSS) columns, strengthened using high modulus carbon-fiber reinforced polymer (CFRP) longitudinal sheets. The model was developed and verified against both experimental and other analytical models. Both geometric and material nonlinearities, which are attributed to the column's initial imperfection and plasticity of steel, respectively, are accounted for. Residual stresses have also been modeled. The axial strength in the experimental study was found to be highly dependent on the column's imperfection. Consequently, no specific correlation was established experimentally between strength gain and amount of CFRP. The model predicted the ultimate loads and failure modes quite reasonably and was used to isolate the effects of CFRP strengthening from the columns' imperfections. It was then used in a parametric study to examine columns of different slenderness ratios, imperfections, number of CFRP layers, and level of residual stresses. The study demonstrated the effectiveness of high modulus CFRP in increasing stiffness and strength of slender columns. While the columns' imperfections affect their actual strengths before and after strengthening,the percentage gain in strength is highly dependent on slenderness ratio and CFRP reinforcement ratio, rather than the value of imperfection.

철근콘크리트 장주의 시간에 다른 구조거동 (Time Effects on the Behavior of Reinforced Concrete Long Columns)

  • 김수만;최재원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.405-408
    • /
    • 2003
  • In a slender column under sustained eccentric compression, the deformations caused by creep and shrinkage can lead to an increase in the loads on the structure and a reduction in strength. This study presents a methodlogy and improved computer program for the analysis of time-dependent long column in considering slender effects and nonlinear behaviors. In this result, when slenderness ratio is greater than 80, we know that magnified moment methods may be not applied in long columns.

  • PDF

지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과 (Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis)

  • 곽효경;김진국
    • 한국전산구조공학회논문집
    • /
    • 제19권4호
    • /
    • pp.375-387
    • /
    • 2006
  • 기존의 연구에서 가정된 모멘트-곡률 관계를 토대로 고정된 안정계수를 갖는 응답스펙트럼을 구성하여 동적 P-$\Delta$ 효과를 분석한 것과는 달리, 이 논문에서는 안정계수의 증가, 즉, 축력의 증가에 따른 하중-변위관계의 변화를 고려할 수 있도록하는 적층단면법을 토대로 실용범위의 세장비와 안정계수를 변화시켜가며, 해석을 수행하여 철근콘크리트 장주의 동적 P-$\Delta$ 효과를 분석하였다. 다양한 지진에 대한 보편화된 결과를 얻기 위해 각기 다른 60개의 입력지진을 사용하였다. 또한, 수평지진과 수직지진을 동시에 작용하여 해석을 수행해 수직지진에 따른 P-$\Delta$ 효과를 살펴보았다. 해석결과, 철근콘크리트 장주의 최대변형은 축력, P-$\Delta$ 효과 및 수직지진의 영향을 거의 받지 않는 반면, 부재 내력은 축력에 의한 강성과 항복강도의 증가에 의해 증가하기 때문에, 철근콘크리트 장주의 내진설계시 축력효과를 고려하여 설계할 경우 P-$\Delta$ 효과 또는 수직지진에 대한 추가적인 영향은 고려하지 않아도 될 것으로 판단된다.