• Title/Summary/Keyword: sleep-induction

Search Result 35, Processing Time 0.024 seconds

The Comparative Effects of Civet-Containing and Musk-Containing WooHwangChungSimWon on the Central Nervous System (영묘향함유 우황청심원액과 사향함유 우황청심원액의 중추신경계에 대한 약리효과 비교시험)

  • 최은욱;김기남;신상덕;조명행;마응천
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.470-477
    • /
    • 2000
  • WooHwangChungSimWon is a traditional medicine for treatment of hypertension, arteriosclerosis, coma, and stroke in China, Korea, and Japan. In the new prescription of WooHwangChungSimWon, the civet is substituted for the musk, the major component of WooHwangChungSimwon, because of the prohibition law about the musk. We have made a comparative study of the effects on the central nervous system between the musk containing and civet containing WooHwangChungSimWon. In order to investigate the effects on the central nervous system, we have examined spontaneous motor activities, anti-convulsion activities induced by chemicals or electric shock, sleep induced by hexobarbital, and antistress effects. In the examination of anti-convulsion effects against the electric shock and injection of pentetrazol, only the civet containing WooHwangChungSimWon showed the anti-convulsion effects, i.e. the duration of convulsion by electric shock was decreased (control: 104.0 seconds, low dose of civet containing WooHwangChungSimWon: 60.7 seconds) and the duration of suppression against pentetrazol induced convulsion was increased (control: 392.3 seconds, low dose of civet containing WooHwangChungSimWon: 574.0 seconds, high dose of civet containing WooHwangChungSimWon: 561.4 seconds). In the other examinations, all kinds of WooHwangChungSimWon showed sedation, anti-convulsion activities, and induction of sleeping. These results suggest that there are no significant differences between the musk containing and civet containing WooHwangChungSimWon except the anti-convulsion effects against the convulsions induced by electric shock and pentetrazol.

  • PDF

Fermented Property and Antioxidative Effect of GABA Producing Lactobacillus plantarum from Kimchi (김치 유래 GABA 생성 Lactobacillus plantarum의 발효 및 항상화 특성)

  • Lee, Young-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.440-446
    • /
    • 2021
  • GABA (γ-aminobutyric acid) has various beneficial effects on human health such as anti-hypertension, diuretic, tranquilizer, sleep induction and anti-stress functions. In this study, the properties and the antioxidizing effects of a fermented solution was investigated by applying GABA producing lactic acid bacteria (LAB) from kimchi to corn silk extract. Lactobacillus plantarum LAB459 was identified by physiological properties, carbohydrate fermentation pattern and 16s rRNA sequence analysis. Also, the GABA production ability of the separated L. plantarum LAB459 was confirmed through TLC and HPLC analysis. Moreover, from the fermentation of corn silk extract with skim milk, it was revealed that approximately 1 ㎍/mg of GABA produced by lyophilized ferments was yielded. Lastly, the flavonoid content and DPPH radical scavenging activity were found to be high in the lyophilized ferments than in the aqueous extracts. Therefore, L. plantarum LAB459 is considered to be used as a starter culture for various fermented foods or in food and medicinal materials.

Polymorphisms in the TNF-α Gene and Extended HLA and TNF-α Haplotypes in Koreans (한국인에서의 TNF-α 유전자 다형성과 HLA/TNF-α 일배체형의 분포)

  • Park, Yoon June;Park, Hye Jin;Park, Myoung Hee
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.242-247
    • /
    • 2002
  • Background: Tumor necrosis factor-alpha (TNF-$\alpha$) is known to play an important role in various conditions such as inflammation, autoimmunity, apoptosis, insulin resistance and sleep induction. Five single nucleotide polymorphisms (SNPs) have been known to affect the transcriptional activities of TNF-$\alpha$: -1,031T/C, -863C/A, -857C/T, -308G/A and -238G/A. Methods: We have investigated 5 SNPs of the promoter region of TNF-$\alpha$ gene, the distribution of 5-locus TNF-$\alpha$ haplotypes, and their haplotypic associations with previously typed HLA-A, -B and -DRB1 loci in 107 healthy unrelated Koreans. TNF-$\alpha$ SNPs were typed using PCR-single-strand conformation polymorphism (SSCP) and PCR-restriction fragment length polymorphism (RFLP) methods. Results: The allele frequencies of -1,031C, -863A, -857T, -308A, and-238A, which are known as the high-producer-type, were 19.3%, 15.9%, 14.0%, 5.9%, and 2.9%, respectively. The frequency of -308A allele, known to be associated with autoimmune diseases, was 5.9% in Koreans which was lower than Caucasians (14~17%) and somewhat higher than Japanese (1.7%). Five most common TNF-$\alpha$ haplotypes (-1,031/-863/-857/-308/-238) comprised over 95% of total haplotypes: TCCGG (58.4%), CACGG (14.8%), TCTGG (13.7%), TCCAG (5.3%), and CCCGA (3.1%). Strong positive associations (P<0.001) were observed between TCCGG and B62; between CACGG and B51, $DRB1^*0901$; between TCTGG and B35, B54, B59, $DRB1^*1201$; and between TCCAG and A33, B58, $DRB1^*0301$, $DRB1^*1302$. Five most common extended haplotypes (>3%) comprised around 16% of total haplotypes: A33-B58-TCCAG-$DRB1^*1302$, A24-B52-TCCGG-$DRB1^*1502$, A33-B44-TCCGG-$DRB1^*1302$, A24-B7-TCCGG-$DRB1^*0101$, and A11-B62-TCCGG-$DRB1^*0406$. The distribution of extended HLA and TNF-$\alpha$ haplotypes showed that most of HLA haplotypes were almost exclusively associated with particular TNF-$\alpha$ haplotypes. Conclusion: The results obtained in this study would be useful as basic data for anthropologic studies and disease association studies in Koreans.

Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study

  • Liu, Ying;Zheng, Jing;Zhang, Hong Ping;Zhang, Xin;Wang, Lei;Wood, Lisa;Wang, Gang
    • Allergy, Asthma & Immunology Research
    • /
    • v.10 no.6
    • /
    • pp.628-647
    • /
    • 2018
  • Purpose: Obesity is associated with metabolic dysregulation, but the underlying metabolic signatures involving clinical and inflammatory profiles of obese asthma are largely unexplored. We aimed at identifying the metabolic signatures of obese asthma. Methods: Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body composition and clinical assessment, sputum induction, and blood sampling. Sputum supernatant was assessed for interleukin $(IL)-1{\beta}$, -4, -5, -6, -13, and tumor necrosis factor $(TNF)-{\alpha}$, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway topology enrichment analysis. The differential metabolites were further validated by correlation analysis with body composition, and clinical and inflammatory profiles. Results: Body composition, asthma control, and the levels of $IL-1{\beta}$, -4, -13, leptin and adiponectin in obese asthmatics were significantly different from those in lean asthmatics. OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate pathway in serum are suggested to be significant pathways related to obese asthma. Conclusions: GC-TOF-MS-based metabolomics indicates obese asthma is characterized by a metabolic profile different from lean asthma. The potential metabolic signatures indicated novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and therapeutic implications, which needs further replication and validation.

Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand

  • Park, Bobae;Yu, Sun Nyoung;Kim, Sang-Hun;Lee, Junwon;Choi, Sung Jong;Chang, Jeong Hyun;Yang, Eun Ju;Kim, Kwang-Youn;Ahn, Soon-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1017-1025
    • /
    • 2022
  • Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.