• Title/Summary/Keyword: sleep delay

Search Result 75, Processing Time 0.023 seconds

Power-Saving Mechanism Considering Round-Trip Delay in LTE Systems (LTE 시스템에서 양방향 지연을 고려한 전력절감 방식)

  • Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1045-1053
    • /
    • 2013
  • In this paper, we propose a new power-saving mechanism (PSM) for Long-Term Evolution (LTE) systems by considering a round-trip delay between a user equipment (UE) and its correspondence node. The proposed PSM changes the order of the operational procedures of the legacy LTE PSM by taking the traffic arrival pattern suffering the round-trip delay into account. After modeling the round-trip delay, we numerically analyze the proposed PSM with respect to energy consumption and buffering delay. Then, we characterize these performances by employing a simple energy-delay tradeoff (EDT) curve according to the operational parameters. The resulting EDT curve clearly shows that the proposed PSM outperforms the legacy LTE PSM in terms of both the energy consumption and buffering delay.

A Delay Efficient and Bursty Traffics Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 지연과 버스티 트래픽에 적합한 MAC 프로토콜)

  • Kim, Hye Yun;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • Data packets from sensor nodes scattered over measuring fields are generally forwarding to the sink node, which may be connected to the wired networks, in a wireless sensor network. So many data packets are gathered near the sink node, resulting in significant data packet collisions and severe transmission latency. In an event detection application such as object tracking and military, bursty data is generated when an event occurs. So many data packet should be transmitted in a limited time to the sink node. In this paper, we present a delay efficient and bursty traffic friendly MAC protocol called DEBF-MAC protocol for wireless sensor networks. The DEBF-MAC uses a slot-reserved mechanism and sleep period control method to send multiple data packets efficiently in an operational cycle time. Our simulation results show that DEBF-MAC outperforms DW-MAC and SR-MAC in terms of energy consumption and transmission delay.

A Case of Obstructive Sleep Apnea Syndrome in Childhood (소아 폐쇄성 수면무호흡증후군 1례)

  • Lee, Seung-Hoon;Kwon, Soon-Young;Lee, Sang-Hag;Chang, Ji-Won;Kim, Jin-Kwan;Shin, Chol
    • Sleep Medicine and Psychophysiology
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2004
  • The obstructive sleep apnea syndrome can occur due to various etiologies in children. In otherwise healthy children, adenotonsillar hypertrophy is the leading cause of childhood obstuctive sleep apnea. Obstructive sleep apnea caused by adenotonsillar hypertrophy can lead to a variety of symptoms and sequelae such as behavioral disturbance, enuresis, failure to thrive, developmental delay, cor pulmonale, and hypertension. So if obstructive sleep apnea is clinically suspected, proper treatment should be administered to the patient after diagnostic examinations. More than 80% improvement is seen in symptoms of obstructive sleep apnea caused by adenotonsillar hypertrophy in children after tonsillectomy and adenoidectomy. However, when it is impossible to treat the patient using surgical methods or residual symptoms remained after tonsillectomy and adenoidectomy, additional treatments such as weight control, sleep position change, and continuous positive airway pressure (CPAP), should be considered. This paper reports a case using weight control and Auto-PAP to control mild sleep apnea and snoring, which in long-term follow-up were not resolved after tonsillectomy and adenoidectomy for severe obstructive sleep apnea.

  • PDF

A OSPF Routing Scheme based on Energy Profiles and Its Characteristics for QoS-Aware Energy Saving(QAES) in IP Core Networks (IP 네트워크에서 QoS-Aware Energy Saving(QAES)을 위한 Energy Profile 기반 OSPF 라우팅 방식 및 특성)

  • Seo, Yusik;Han, Chimoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.9-21
    • /
    • 2016
  • Nowadays various methods for energy saving have been studied in IP networks. This paper suggests a 2-phase OSPF routing method for energy saving on IP networks having various energy profiles and analyzes its characteristics. The phase-1 of the routing is an OSPF routing method considering the energy cost of devices besides existing metrics to minimize energy consumption. In the phase-2 of the routing, it makes core nodes go into sleep sate for energy saving and reroutes the paths affected by sleeping core nodes. At this time, we confirm that the characteristics of mean delay and energy efficiency can be satisfied by limiting an allowable hop number in the reroute paths, and utilization rate of nodes and links for assuring energy saving and network-level QoS. Since the efficiency of energy saving and delay characteristics differ according to selection methods of core nodes to go into sleep state, it is that the a method of core node selection based on MP(minimum_path) is more excellent than others in terms of network-level QoS and energy saving in IP networks.

Performance Evaluation of Traffic Adaptive Sleep based MAC in Clustered Wireless Sensor Networks (클러스터 기반 무선 센서 망에서 트래픽 적응적 수면시간 기반 MAC 프로토콜 성능 분석)

  • Xiong, Hongyu;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.107-116
    • /
    • 2011
  • In this paper, a traffic adaptive sleep based medium access control (TAS-MAC) protocol for wireless sensor networks (WSNs) is proposed. The protocol aims for WSNs which consist of clustered sensor nodes and is based on TDMA-like schema. It is a typical schedule based mechanism which is adopted in previous protocols such as LEACH and Bit-Map Assisted MAC. The proposed MAC, however, considers unexpected long silent period in which sensor nodes have no data input and events do not happen in monitoring environment. With the simple traffic measurement, the TAS-MAC eliminates scheduling phases consuming energy in previous centralized approaches. A frame structure of the protocol includes three periods, investigation (I), transmission (T), and sleep-period (S). Through the I-period, TAS-MAC aggregates current traffic information from each end node and dynamically decide the length of sleep period to avoid energy waste in long silent period. In spite of the energy efficiency of this approach, the delay of data might increase. Thus, we propose an advanced version of TAS-MAC as well, each node in cluster sends one or more data packets to cluster head during the T-period of a frame. Through simulation, the performance in terms of energy consumption and transmission delay is evaluated. By comparing to BMA-MAC, the results indicate the proposed protocol is more energy efficient with tolerable expense in latency, especially in variable traffic situation.

Unsynchronized Duty-cycle Control for Sensor Based Home Automation Networks

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1076-1089
    • /
    • 2012
  • Home automation networks are good environments for merging sensor networks and consumer electronics technologies. It is very important to reduce the energy consumption of each sensor node because sensor nodes operate with limited power based on a battery that cannot be easily replaced. One of the primary mechanisms for achieving low energy operation in energy-constrained wireless sensor networks is the duty-cycle operation, but this operation has several problems. For example, unnecessary energy consumption occurs during synchronization between transmission schedules and sleep schedules. In addition, a low duty-cycle usually causes more performance degradation, if the network becomes congested. Therefore, an appropriate control scheme is required to solve these problems. In this paper, we propose UDC (Unsynchronized Duty-cycle Control), which prevents energy waste caused by unnecessary preamble transmission and avoids congestion using duty-cycle adjustment. In addition, the scheme adjusts the starting point of the duty-cycle in order to reduce sleep delay. Our simulation results show that UDC improves the reliability and energy efficiency while reducing the end-to-end delay of the unsynchronized duty-cycled MAC (Media Access Control) protocol in sensor-based home automation networks.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

SB-MAC : Energy efficient Sink node Based MAC protocol for Wireless Sensor Networks (무선 센서 네트워크 에서 에너지 효율적인 싱크노드 기반 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.177-182
    • /
    • 2014
  • In this paper, we propose an energy efficient sink node based MAC protocol for Wireless Sensor Networks (WSNs). The proposed sink node-based MAC (SB-MAC) protocol uses a RB(rapid beacon) frame to save sender's energy consumption and to reduce transmission delay. The RB frame is a modified IEEE 802.15.4 beacon frame. The RB frame contains the length of the sender nodes data. Using this information other nodes except sender and receiver nodes can be stay sleep mode long time to reduce energy consumption. Results have shown that the SB-MAC protocol outperformed other protocols like X-MAC and RI-MAC in terms of packet delivery delay and energy consumption. The SB-MAC protocol is especially energy efficient for the networks with one sink node and many senders.

Design of a Low-Power MOS Current-Mode Logic Circuit (저 전력 MOS 전류모드 논리회로 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.121-126
    • /
    • 2010
  • This paper proposes a low-power MOS current-mode logic circuit with the low voltage swing technology and the high-threshold sleep-transistor. The sleep-transistor is used to high-threshold voltage PMOS transistor to minimize the leakage current. The $16{\times}16$ bit parallel multiplier is designed by the proposed circuit structure. Comparing with the conventional MOS current-model logic circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/104. The proposed circuit is achieved to reduce the power consumption by 11.7% and the power-delay-product by 15.1% compared with the conventional MOS current-model logic circuit in the normal mode. This circuit is designed with Samsung $0.18\;{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation.

Bandwidth Allocation Algorithm for Improving QoS in EPON with Sleep Mode (수면 모드를 이용하는 EPON에서 QoS 향상을 위한 대역 할당 알고리즘)

  • Yang, Won-Hyuk;Jeong, Jin-Hyo;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.489-498
    • /
    • 2012
  • Recently, as the interest in Green IT is exponentially increased, EPON with sleep mode has been studied to reduce energy consumption in access network. In oder to guarantee cyclic sleep for ONU(Optical Network Units), EPON with sleep mode transmits upstream and downstream data at the same time. However, since conventional algorithms for sleep mode in EPON allocate bandwidth to each ONU according to upstream bandwidth request, the QoS of downstream data is not guaranteed when the offered load of OLT is larger than that of ONU. In this paper, we propose a bandwidth allocation algorithm for improving QoS in EPON with sleep mode. The proposed algorithm compares its size with an upstream request of ONU when a downstream buffer in the OLT exceeds a QoS threshold. And then it allocates selectively a bandwidth that satisfies the required QoS between the bandwidth request of ONU and OLT. Therefore, the proposed algorithm can save energy through cyclic sleep of ONUs while guaranteeing the QoS of up/downstream data. In order to evaluate the proposed algorithm, we perform simulation in terms of total sleep time of ONUs, queueing delay between OLT and ONU, and the utilization of allocated bandwidth at OLT through OPNET.