• Title/Summary/Keyword: slave node

Search Result 43, Processing Time 0.021 seconds

Design of Quantum Key Distribution System without Fixed Role of Cryptographic Applications (암호장치의 송·수신자 역할 설정이 없는 양자키분배 시스템 설계)

  • Ko, Haeng-Seok;Ji, Se-Wan;Jang, Jingak
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.771-780
    • /
    • 2020
  • QKD(Quantum Key Distribution) is one of the protocols that can make two distant parties safely share secure keys against the threat of quantum computer. Generally, cryptographic applications which are connected to the QKD device have fixed roles as a transmitter and a receiver due to the race condition and complexity of implementation. Because the conventional QKD system is mainly applied to the link encryptor, there are no problems even if the roles of the cryptographic devices are fixed. We propose a new scheme of QKD system and protocol that is easy to extend to the QKD network by eliminating quantum key dependency between cryptographic device and QKD node. The secure keys which are generated by the TRNG(True Random Number Generator) are provided to the cryptographic applications instead of quantum keys. We design an architecture to transmit safely the secure keys using the inbound and outbound quantum keys which are shared between two nodes. In this scheme, since the dependency of shared quantum keys between two QKD nodes is eliminated, all cryptographic applicatons can be a master or a slave depending on who initiates the cryptographic communications.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

A study on improvement of ISO/IEC 29157 MAC protocol (ISO/IEC 29157 표준 MAC 프로토콜 개선 연구)

  • Cha, Bong-Sang;Jeong, Eui-Hoon;Jeon, Gwangil;Seo, Dae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.17-26
    • /
    • 2013
  • ISO/IEC 29157 originally developed in the Republic of Korea and is based on commercially available PicoCast v1.0. ISO/IEC JTC1 SC6 was registered by the international standard on May 2010. A single platform for a variety of applications and media formats to support development objectives were. ISO/IEC 29157 based wireless networks, ie, Pico-net to master node periodically transmit sync signal is synchronized to the number of slave nodes have the communications structure. Pico-net also supports a variety of network topologies and direct communication between nodes(single-hop communication) and QoS is guaranteed. But Pico-net network structure has the following problems. Loss of communication problems due to mobile nodes, resulting in limitations of node mobility and wireless network operation range of conventional wireless networks operating range less than 1/4 was reduced to the problem. In this paper, a possible solution to the problems mentioned is proposed, using multi-hop communication technology and sync signal transmission technology between nodes.