• Title/Summary/Keyword: slag particles

Search Result 73, Processing Time 0.024 seconds

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Investigation of Corrosion Mechanism by Analyses of Spent Chromia Refractory fvom a Coal Gasifier (석탄 가스화기에서의 크로미아 내화물 분석을 통한 화학적 침식 기구 규명)

  • Kim Han Bom;Oh Myongsook
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-290
    • /
    • 2004
  • Spent refractories from a coal gasifier after 1000 hours of operation were analyzed for crystalline phases, chemical composition and microstructures as a function of slag penetration depth, and the slag corrosion mechanism was determined. The chemical corrosion of chromia refractory occurred via reaction between Cr$_2$O$_3$ of the refractory and FeO and A1$_2$O$_3$ in the slag. The FeO reacted with Cr$_2$O$_3$ at the slare/refractory interface and formed FeCr$_2$O$_4$. After all FeO were consumed, Al in the penetrating slag substituted Cr in Cr$_2$O$_3$, forming (Al, Cr)$_2$O$_3$, at the edges of the particle, which were broken to form fragments rich in Al. The corrosion resistance of Cr$_2$O$_3$ varied with the particle size and the extent of sintering, and the higher resistance was observed in the larger and more sintered particles. There was no chemical change in ZrO$_2$, but showed the effects of physical corrosion: the grain boundaries became more wavy, and ZrO$_2$ grains were split in the corroded area. The slag penetration depth increased in the refractory samples farther down from the feed nozzles.

Synthesis of P-type Zeolite Using Melting Slag from Municipal Incineration Ash (도시 소각재 용융슬래그로부터 P형 제올라이트 합성)

  • Lee Sung-Ki;Jang Young-Nam;Chae Soo-Chun;Ryu Kyoung-Won;Bae In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.7-14
    • /
    • 2006
  • Melting slag generated from the lots of municipal incineration ash, which causes the one of big urban problems in modern industrial society, was used as starting material for the hydrothermal synthesis of zeolite. P-type zeolite has been successfully synthesized by the combined process of both 'hydrogelation' and 'clay conversion' method. Commercial sodium silicate was used as Si source, and $NaAlO_2$ was prepared by the reaction in a $Na_{2}O/Al_{2}O_{3}$ molar ratio of 1.2. The optimum conditions for zeolite synthesis was found to be the $SiO_{2}/Al_{2}O_{3}$ ratio in the 3.2 and 4.2 range, the $H_{2}O/Na_{2}O$ ratio in the 70.7 and 80.0 range, and more than 15-hour reaction time at $80^{\circ}C$, In the synthesized zeolite, inhomogeneous melting slag particles were disappeared and homogeneous P-type zeolite crystal was grown. The cation exchange capacity of the synthesized zeolite was determined to be approx. 240 cmol/kg.

Properties of Concrete Containing third binary mineral Admixture (3성분계 혼화재료로 사용한 콘크리트 특성)

  • 조일호;양재성;김진희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.95-101
    • /
    • 1999
  • This study was performed to evaluate the characteristics of workability and strength of the concrete containing mineral admixtures such as flyash, blast furnace slag, zeolite powder. As a result, considering their workability and strength, the optimum replacement ratio of them to plain concrete were obtained for each ternary admixture. This increased compressive strength was ascribed to both the closer parkinof fine particles and pozzolan reactivity of powders. This work showed that could be effectively utilized as a blending material without any decrease in the strength of early hydration stage. On the other hand, we found that the compressive strength at early ages ternary ordinary and high strength concrete untill 7 days was small, but that ternary concrete at 28days was highly increased about 31% and 15% extent.

  • PDF

Erosion Resistance Evaluation of High-Strength SCC (고강도 고유동 콘크리트의 침식 저항성)

  • Choi, Sok-Hwan;Lee, Jae-Moon;Han, Man-Yop;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.205-208
    • /
    • 2006
  • Damage of hydraulic concrete structures by the abrasion and erosion process is very severe and it indicates that the necessity of considering the influence of this process while designing concrete mixtures. Abrasion wear of concrete in hydraulic structures is caused by the movement of particles, water-borne debris. The resistance against erosion for high-strength self-consolidating concrete(SCC) was examined in this paper. A newly designed testing method is presented in order to quantitatively estimate the erosion of concrete. It was shown that loss of volume in abraded concrete can be explained as function of material parameters such as the amount of fly ash and blast furnace slag. Those admixtures have been widely used to reduce heat of hydration and improve resistance against sulfate attack. The results of current study can be used as a guideline in selecting the composition of concrete exposed to abrasion-wear.

  • PDF

A Study on the Properties of Mixture Proportion and Compressive Strength of Concrete with the Kind of Mineral Admixtures (혼화재 종류에 따른 콘크리트의 배합 및 압축강도 특성에 관한 연구)

  • Lee Eun-Hi;Shon Myeong-Soo;Han Min-Cheoi;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.51-54
    • /
    • 2004
  • This paper investigated the results of mixture proportion and compressive strength of concrete incorporating mineral admixtures. W/B and contents of mineral admixtures were selected as test parameters. According to test results, use of mineral admixtures resulted in a reduction of fluidity and air contents caused by increased fine particles and absorption effect of FA on reduction of AE agent. Thus, increase of SP and AE agent was needed to maintain the same fluidity and air content as plain concrete. At early stage, use of CKD was beneficial to the compressive strength while at 28days. incorporation of FA and BS had favorable effect on the compressive strength.

  • PDF

Role of class-C fly Ash in the Development of Strength & Microstructure of Fly Ash-GGBS Geopolymer

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, Min jae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.79-80
    • /
    • 2020
  • The class-C fly ash (FA) and ground granulated blast-furnace slag (GGBS) based geopolymer activated in NaOH (4M) was studied regarding compressive strength, porosity, microstructure and formation of crystalline phases. The class-C FA and GGBS blends resulted in reduced strength and increased porosity of the matrix with the increase in FA content. The unreactivity of calcium in blends was observed with increasing FA content leading to strength loss. it is evident from XRD patterns that calcium in FA did not contribute in forming CSH bond, but formation of crystalline calcite was observed. Furthermore, XRD analyses revealed that reduction in FA leads to the reduction in crystallinity and SEM micrographs showed the unreactive FA particles which hinder the formation of denser matrix.

  • PDF

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.

Experimental Study on Cement Cohesion Reduction Effect of Grout Mixer with Vibration Filter (진동필터가 설치된 그라우트 믹서의 시멘트 응집 저감 효과에 대한 실험적 연구)

  • Hwang, Sung-Pil;Jeoung, Jae-Hyeung;Kim, Chang-Yong;Lee, Woo-Je
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • Grouting is reinforcement or cutoff method which uses the hardening agent which is typically represented by portland cement and injected into the ground or the structure. When mixing the cement in powder form with water, the particles tend to cohere each other. Once they cohered, the particle size tends to become larger while injection efficiency becomes lower. This study, in a bid to reduce the cohesion of cement, the screen was set inside the grout mixer so that the cement particles are separated while vibrating them. To validate the effect of vibration screen, comparison test was conducted by using ordinary portland cement, slag cement and micro cement. Viscosity test, bleeding test and grain-size analysis indicated that the characteristics varied significantly after passing through the vibration filter. It is expected that the vibration filter installed inside the grout mixer will reduce the cement cohesion when mixing with water.