• 제목/요약/키워드: slag particles

검색결과 73건 처리시간 0.021초

광재 조합물 소성에 관한 연구 (The Firing of Slag Containing Batch)

  • 박기형;송한식;천성순;김종희
    • 한국세라믹학회지
    • /
    • 제15권4호
    • /
    • pp.185-192
    • /
    • 1978
  • The effects of slag prticle size, $Na_2SO_4$ addition and sulphide in slag to the foam formation was investigated. This investigation showed that the slag particle size and the amount of $Na_2O$ had produced effects on the size of the foam, foam distribution and firing temperatures. In addition to that the amount of sulphide loss during the firing was controlling factor for the foam formation. The smaller slag particles and higher firing temperatures increased the loss of sulphide in the slag. The addition of $Na_2SO_4$ in the slag batch was likely to inhibit the foam formation. The larger slag particles resutled in the larger foam size and tended to be increasing the batch firing temperature. The main constituents of slag formed glass consisted of wallstonite and glassy phase. It is believed that the controlling the slag particle size and the amount of $Na_2SO_4$ in the slag batch will probably be main factors in foam formation.

  • PDF

전기로 제강 슬래그에서 자력선별에 의한 지금의 회수 (A Study on the Recovery of a Metalic Fe-particle from the Steelmaking E.A.F. Slag by the Magnetic Separation)

  • 현종영;김형석;신강호;조동성
    • 자원리싸이클링
    • /
    • 제6권3호
    • /
    • pp.3-8
    • /
    • 1997
  • I사의 전기로 제강 슬래그(이하 슬래그)는 상당량의 금속철(metal Fe)과 wustite(FeO), magnetite(Fe$_3$O$_4$), gehlenite(${CaAl}_{2}{SiO}_{7}$) 및 monticellite(CaMgSiO$_4$)등으로 구성된다. 슬래그에 함유된 금속철(Fe 품위: 95%이상)을 회수하기 위해서는 금속철을 단ㄱ체로 분리시키는 것이 바람직하며, 매립으로 활용할 수밖에 없는 슬래그를 단계적으로 파쇄하면 대부분의 금속철은 구상의 단체로 분리된다. 구상의 단체인 금속철의 크기에 따라 흡인되는 자장의 세기를 측정하면 금속철이 흡인되는 최소 자장의 세기는 약 100G로 거의 일정하다. 다단계로 파쇄한 슬래그를 100G의 자장에서 회수한 산물은 95%이상의 철분이 함유된 금속철이었으나, 자장의 세기를 증가시키면 철의 산화물 및 알칼리 토금속류의 화합물등도 함께 회수되므로 품위가 저하된다. 따라서 매립되는 슬래그를 다단계로 파쇠하고, 각 입도에서 100G로 자선하면 파쇄된 슬래그에 함유된 대부분의 금속철을 회수할 수 있다. I사에서 매립하는 35만톤의 슬래그를 다단계로 파쇄하는 경우에, 30~4.7mm의 입도에서는 매립되는 전체 슬래그중의 약 0.73%인 2천 5백톤 정도의 금속철이 100G의 자장에서 회수될 수 있고, 4.7~0.3mm서도 약 1.2%인 4천 2백톤 정도가 회수될 수 있다. 그러므로 자력선별로 회수할 수 있는 금속철은 매립되는 슬래그중의 약 1.9%인 6천 7백톤 정도가 된다.

  • PDF

Investigation of Strength Characteristics of Ferrous Slag and Waste Concrete in Water Contacting Environment by Exposure to Raining Events

  • Kim, Byung-Gon;Shin, Hyunjin;Lee, Seunghak;Park, Junboum
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.1-7
    • /
    • 2016
  • Ferrous slag is a by-product from steel making process and waste concrete is generated from construction activities. Large part of ferrous slag and waste concrete are recycled as construction materials. However, Ca2+ leaching out of ferrous slag and waste concrete in the water-contacting environment can cause a strength change. Strength can be reduced due to the dissolution of solid form of CaO which is one of the main contents of ferrous slag and waste concrete. On the other hand, strength can be enhanced due to the pozzolanic reaction of cementitious components with water. In this study, steelmaking slag, blast furnace slag, and waste concrete were aged by exposure to raining events, and the change of their compaction and shear strength characteristics was investigated. Optimum moisture content of all materials used in this study increased with aging period while maximum dry unit weight slightly decreased, implying that the relative contents of fine particles increased as the CaO solid particles were dissolved. Internal friction angle and shear strength of recycled materials also increased with aging period, indicating that the materials became denser by the decrease of void ratio attributed to the fine particles generated during the weathering process and the development of cementitious compounds increasing the bonding and interlocking forces between the particles. The results of this study demonstrated that mechanical strength of recycled materials used as construction materials has little chance to be deteriorated during their service life.

결합재의 입도분포가 슬래그 시멘트 페이스트의 유동 특성에 미치는 영향 (Effect of Particle Size Distribution of Binder on the Rheological Properties of Slag Cement Pastes)

  • 황해정;이승헌;이원준
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.6-11
    • /
    • 2007
  • The rheological properties of slag cement pastes by effect of particle size distribution of binder were investigated using a Rheostress 1 rheometer (Haake) with a cylindrical spindle and the relationship between fluidity particle size distribution using the Rosin-Rammler equation. Samples are combined the two types of slag powder and OPC, fine slag particles sized Elaine specific surface area $8,000cm^2/g$, coarse slag particles sized Elaine specific surface area $2,000cm^2/g$, intermediate OPC particles $3,450cm^2/g$, used to search for the combination that would yield the best quality product. The all flow curves which were measured by rheometer showed hysterisis and could be classified into 4 types. When the combination was based on a ratio of 15-20 vol% fine particles, 40-50 vol% intermediate particles, 30-40 vol% coarse particles of the total volume, a high fluidity and low yield-strength was achieved. The Rosin-Rammler function can explain aboved correlation flow curve types. On type 1, the n-value had a correlation with plastic viscosity however the blend of type 2 and 3 showed consistent n-value regardless of plastic viscosity. In addition, the blend in type 4 tended to a rise in fluidity according to the increase of the n-value.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Mechanical and microstructural study of rice husk ash geopolymer paste with ultrafine slag

  • Parveen, Parveen;Jindal, Bharat Bhushan;Junaid, M. Talha;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.217-223
    • /
    • 2019
  • This paper presents the mechanical and microstructural properties of the geopolymer paste which was developed by utilizing the industrial by-products, rice husk ash (RHA) and ultra-fine slag. Ultra-fine slag particles with average particle size in the range of 4 to 5 microns. RHA is partially replaced with ultra-fine slag at different levels of 0 to 50%. Sodium silicate to sodium hydroxide ratio of 1.0 and alkaline liquid to binder (AL/B) ratio of 0.60 is taken. Setting time, compressive, flexural strengths were studied up to the age of 90 days with different concentrations of NaOH. The microstructure of the hybrid geopolymer paste was studied by performing the SEM, EDS, and XRD on the broken samples. RHA based geopolymer paste blended with ultrafine slag resulted in high compressive and flexural strengths and increased setting times of the paste. Strength increased with the increase in NaOH concentration at all ages. The ultra-small particles of the slag acted as a micro-filler into the paste and enhanced the properties by improving the CASH, NASH, and CSH. The maximum compressive strength of 70MPa was achieved at 30% slag content with 16M NaOH. The results of XRD, SEM, and EDS at 30% replacement of RHA with ultra-fine slag densified the paste microstructure.

전로슬래그의 콘크리트용 골재로서 활용을 위한 팽창유발 물질 선별 연구 (A Study on the Selection of Expansion-Causing Substances for the Use of Converter Slag as Aggregate for Concrete)

  • 최선미;라정민;강인규;안태윤;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2022
  • The use of converter slag as an aggregate for concrete is limited due to the risk of expansion. This study analyzed the substances causing the expansion of converter slag and evaluated the possibility of its use as an aggregate for concrete through separation and selection. As a result of the experiment, it was confirmed that CaO and MgO were concentrated in the slag particles inducing expansion, and it was confirmed that it was possible to separate them from non-expanded particles through magnetic.

  • PDF

용강 및 슬래그에 의한 지르코니아/흑연계 침지노즐의 침식기구 (Corrosion mechanism of zirconia/graphite SEN by molten steel and slag)

  • 선우식;김환;이종국
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.226-232
    • /
    • 2000
  • 침지노즐(SEN)의 재료로 사용되는 지르코니아/흑연 재질에서 용강 및 슬래그에 의한 침식의 형태를 살펴본 결과, 침식의 첫번째 기구는 부분안정화 지르코니아 내 안정화제인 CaO가 용강 및 슬래그에 의해 용해되면서 입방정 안정화 지르코니아가 단사정상으로 상전이하여 일어났는데, 상전이 시 부피팽창에 의한 균열이 발생하고 파괴가 진행되었고, 이로 인하여 미세 $ZrO_2$입자의 용해 및 탈락이 촉진되었다. 침식의 두 번째 기구는 슬래그가 큰 c-$ZrO_2$입자의 입계를 따라 침투하여 작은 입자들로 분리시키고, 작은 입자들이 용강과 슬래그에 탈락되어 진행되었다. 마지막 기구로는 입방정 지르코니아와 흑연이 반응하여 다공질의 미세한 ZrC 상을 형성하고, 이들이 slag에 용해되면서 침식이 진행되었다.

  • PDF

Diverse Application of ECC Designed with Ground Granulated Blast Furnace Slag

  • Kim, Jeong-Su;Kim, Yun-Yong;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.11-18
    • /
    • 2007
  • In the recent design of high ductile engineered cementitious composites (ECC), optimizing both processing and mechanical properties for specific applications is critical. This study employs a method to develop useful ECC produced with slag particles (slag-ECC) in the field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing while retaining the ductile material properties. To control the rheological properties of the composite, the basic slag-ECC composition was initially obtained, determined based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

킥모터 슬래그 적층량 예측 (Prediction for Slag Mass Accumulation in the Kick Motor)

  • 장제선;김병훈;조인현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.217-220
    • /
    • 2008
  • 킥모터의 정확한 성능 예측을 위해서 슬래그 적층량을 구하였다. 알루미늄 액적의 궤적 계산을 통해 슬래그가 모터 내부에 적층되는 현상을 나타내었다. 유동현상 및 액적의 적층 현상을 Flunet 6.3을 사용해서 수치해석을 수행하였다. 슬래그 적층량을 예측하기 위해 비행중의 가속도, 액적의 크기 등에 대한 영향을 분석하였고 이를 고려하여 총 슬래그양을 구하였다. 지상시험 결과를 이용해서 구한 슬래그양과 비교해서 수치해석을 통한 슬래그 적층량이 잘 예측된 것을 확인하였다.

  • PDF